

Technische Universität Graz

Institute of Solid State Physics

Phonons

Thermal properties

1. Determine the dispersion relation:

Write down the equations of motion (masses and springs).

The solutions to these equations will be

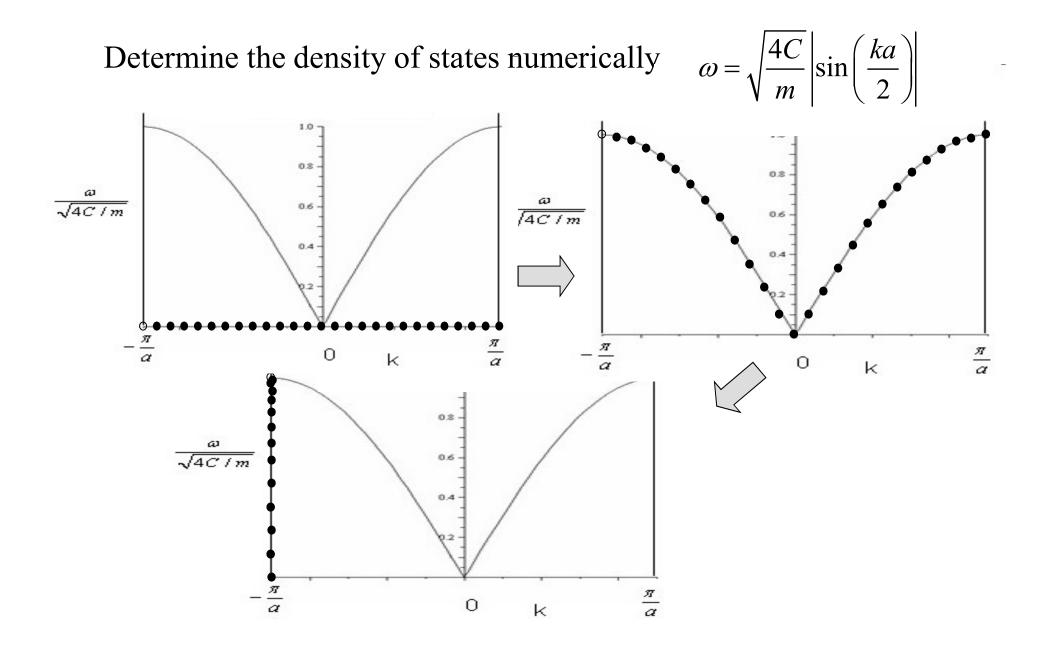
$$A_{k}\exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

Substitute the solutions into the equations of motion to determine the dispersion relation.

2. Determine the density of states numerically from the dispersion relation $D(\omega)$

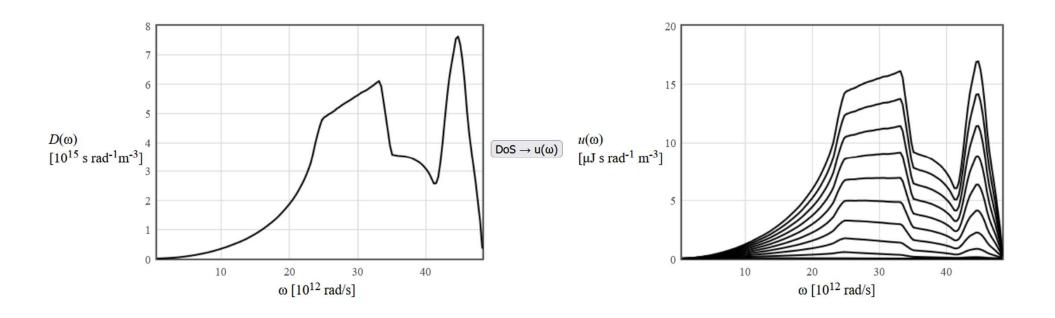
For every allowed *k*, find all corresponding values of ω .

Linear Chain - density of states

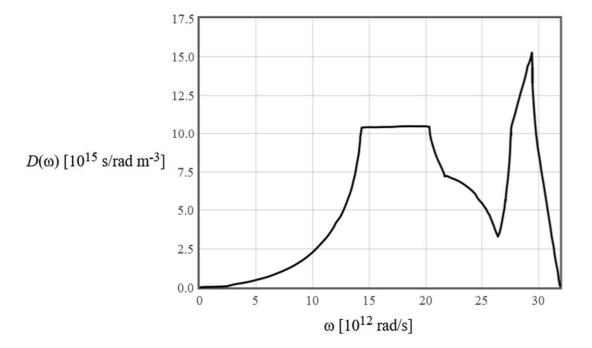


Density of states \rightarrow energy spectral density

$$u(\omega) = rac{\hbar\omega D(\omega)}{\exp\left(rac{\hbar\omega}{k_BT}
ight) - 1}$$



http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2uw.html



Phonon density of states for fcc silver

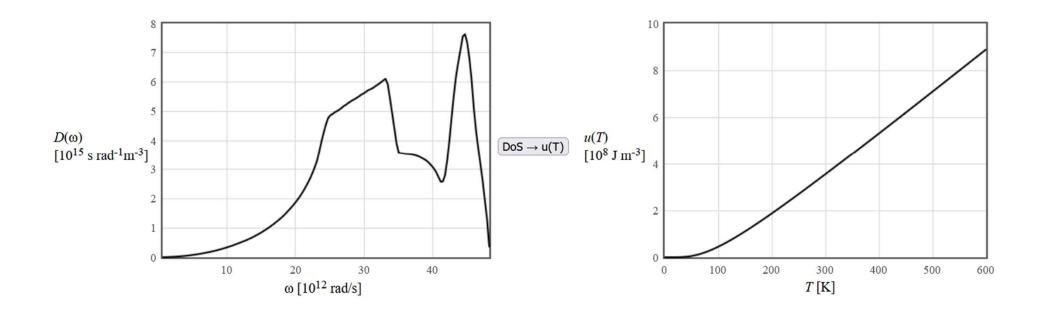
The atomic density is taken to be 5.86×10^{28} m⁻³. Each atom has three degrees of freedom so the integral over all frequencies is $3 \times 5.86 \times 10^{28}$ m⁻³. The data is from <u>doi: 10.1007/b19988</u>.

T = 296 K

ω [rad/s]	$D(\omega)$ [s rad ⁻¹ m ⁻³]
0.0000 0.0	000
5.7327e+10	6.8161e+12
4.0123e+11	2.3856e+13
7.4510e+11	3.0672e+13
1.0890e+12	3.4080e+13
1.4233e+12	4.0897e+13
1.7624e+12	5.1121e+13
2.0967e+12	5.7937e+13
2.4120e+12	7.4977e+13
2.7177e+12	1.2610e+14
3.0379e+12	1.8744e+14
3.3723e+12	2.3516e+14
2 71620112	2 72610111

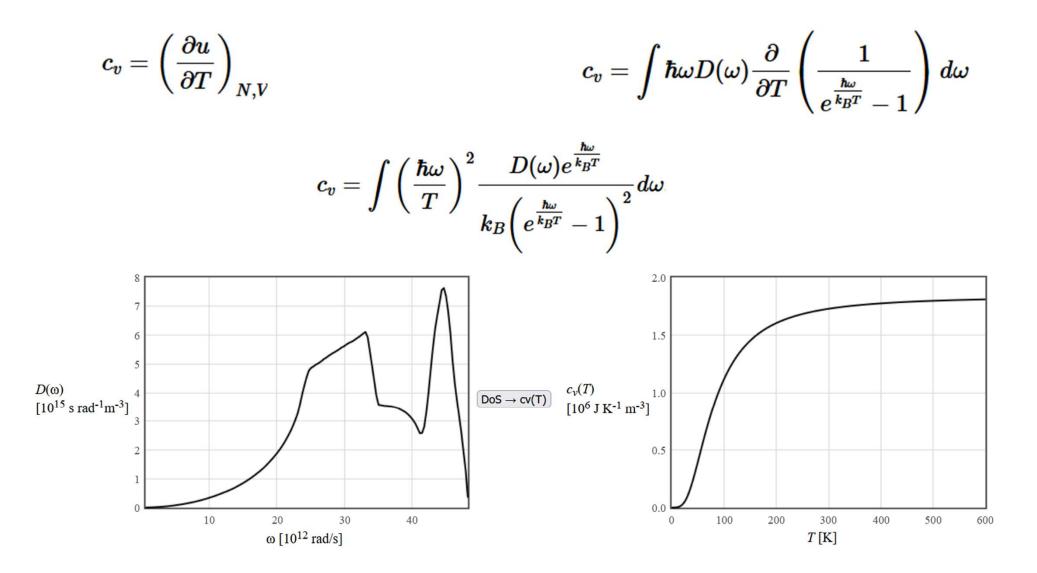
Density of states \rightarrow Internal energy density

$$u(T) = \int\limits_{0}^{\infty} rac{\hbar\omega D(\omega)}{\exp\left(rac{\hbar\omega}{k_BT}
ight) - 1} \, d\omega$$



http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2ut.html

Specific Heat



http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2cv.html

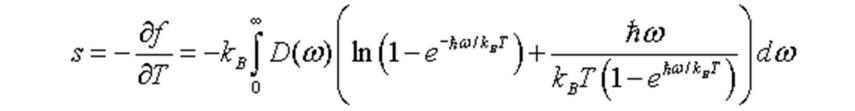
Heat capacity is the measure of the heat energy required to increase the temperature of an object by a certain temperature interval.

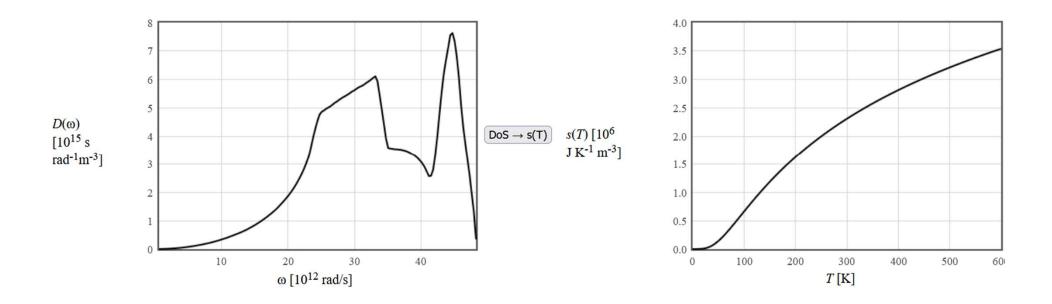
Specific heat is the measure of the heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval.

For solids, the heat capacity at constant volume and heat capacity at constant pressure are almost the same.

The heat capacity was historically important for understanding solids.

Density of states \rightarrow entropy density

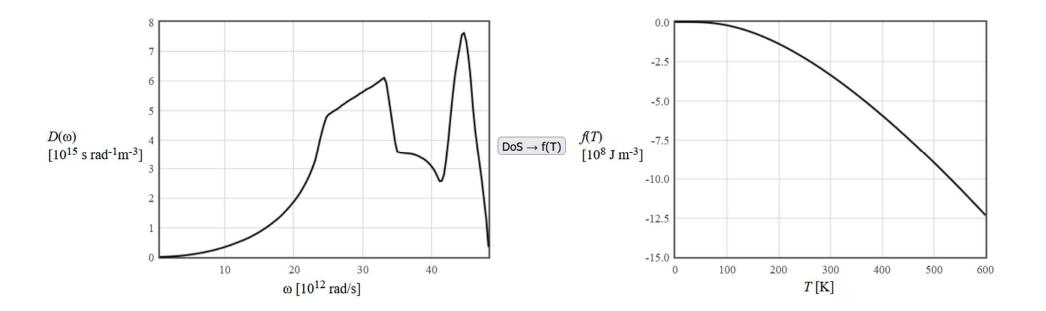




http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2s.htmll

Density of states \rightarrow Helmholtz free energy density

$$f(T) = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega.$$



http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2h.html

Phonons

	Linear Chain $m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$	Linear chain 2 masses $M_1 \frac{d^2 u_s}{dt^2} = C(v_{s-1} - 2u_s + v_s)$ $M_2 \frac{d^2 v_s}{dt^2} = C(u_s - 2v_s + u_{s+1})$	$\begin{array}{c} \underbrace{\frac{d^2 u_{lmn}^x}{dt^2} = \frac{C}{\sqrt{3}\ m} \big[\big(u_{l+1m+1n+1}^x - u_{lmn}^x \big) + \big(u_{l-1m+1n+1}^x - u_{ln}^x \big) \\ + \big(u_{l+1m-1n+1}^x - u_{lmn}^x \big) + \big(u_{l+1m+1n-1}^x - u_{lmn}^x \big) + \big(u_{l-1m+1}^x + (u_{l+1m-1n-1}^x - u_{lmn}^x) + (u_{l+1m+1n+1}^x - u_{lmn}^y) - (u_{l-1m+1}^y + (u_{l+1m-1n+1}^y - u_{lmn}^y) - (u_{l+1m+1n-1}^y - u_{lmn}^y) + (u_{l-1m+1}^y + (u_{l+1m-1n-1}^y - u_{lmn}^y) + (u_{l+1m+1n+1}^y - u_{lmn}^z) - (u_{l-1m+1}^z + (u_{l+1m-1n+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) - (u_{l-1m+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) + (u_{l-1m+1}^z - u_{lmn}^z) + (u_{l+1m+1n-1}^z - u_{lmn}^z) + (u_{l-1m+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) + (u_{l-1m+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) + (u_{l-1m+1}^z - u_{lmn}^z) + (u_{l+1m+1n-1}^z - u_{lmn}^z - u_{lmn}^z) + (u_{l+1m+1m-1}^z - u_{lmn}^z - u_{lmn}^z - u_{lmn}^z) + (u_{l+1m+1m+$
Eigenfunction solutions	$u_s = A_k e^{i(ksa - \alpha s)}$	$u_{s} = ue^{i(ksa-at)}$ $v_{s} = ve^{i(ksa-at)}$	$u_{lmn}^{x} = u_{\overrightarrow{k}}^{x} e^{i(l\overrightarrow{k}\cdot\overrightarrow{a_{1}}+m\overrightarrow{k}\cdot\overrightarrow{a_{2}}+n\overrightarrow{k}\cdot\overrightarrow{a_{3}})} = u_{\overrightarrow{k}}^{x} e^{i(\frac{(-l-1)}{k}-1)}$ And similar expressions for the y and z of
Dispersion relation	$\omega = \sqrt{\frac{4C}{m}} \left \sin\left(\frac{ka}{2}\right) \right $ $\frac{\omega}{\sqrt{4C/m}}$ $-\frac{\pi}{a}$ 0 k $\frac{\pi}{a}$	$\omega^{2} = C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm C \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} \left(\frac{ka}{2} \right)}{M_{1}M_{2}}}$ $\left[2C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \right]^{1/2} \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{1/2} \left(\frac{2C/M_{2}}{M_{1}} \right)^{1/2} \left(\frac{2C/M_{2}}{M_{2}} \right)^{1/2} \left($	ω $\sqrt{C/m}$ $1,5$ $0,0$ Γ H P Γ L
Density of states <i>D(k</i>)	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{3k^2}{2\pi^2}$

Thermal properties

internal energy density
$$u = \int_{0}^{\infty} u(\omega) d\omega = \int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \left[J/m^3 \right]$$

heat
$$c_v = \frac{du}{dT} = \int \left(\frac{\hbar\omega}{T}\right)^2 \frac{D(\omega) \exp\left(\frac{\hbar\omega}{k_B T}\right)}{k_B \left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)^2} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

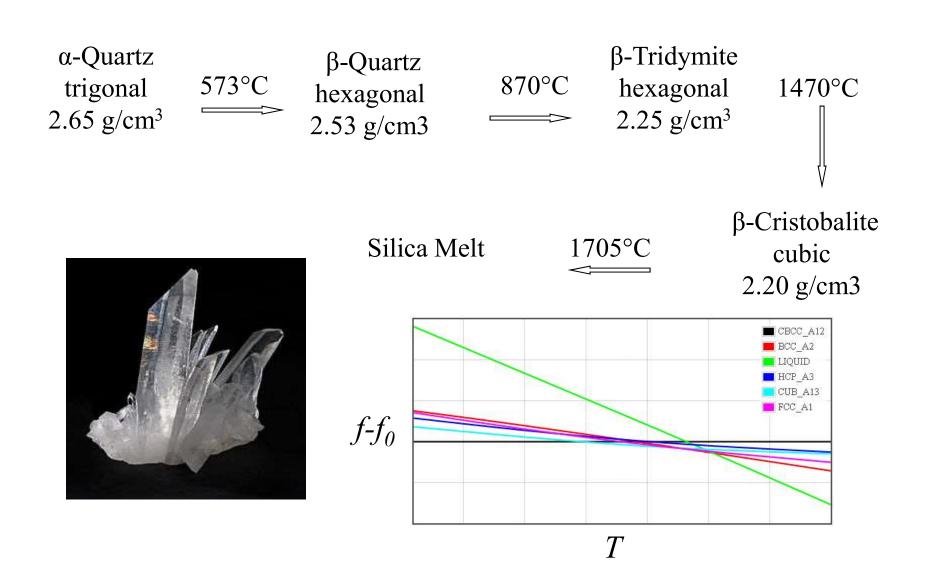
specific heat

entropy density
$$s(T) = \int \frac{C_v}{T} dT = \frac{1}{T} \int_0^\infty \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

Helmholtz free energy density

$$f(T) = u - Ts = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega \quad \left[J/m^3\right]$$

Quartz



GaPO₄

Material Constants

GaPO₄ (gallium phosphate) is a high temperature piezoelectric crystal, with superior sensing properties without any pyroelectric characteristics.

This crystal has been used in technical applications such as pressure sensors since 1994.

GENERAL DATA

Point group	32 (D ₃) (quartz-homeotype)
Lattice constants (25°C)	a = 4.901 Å, c = 11.048 Å
Density (25°C)	3570 kg/m ³

PIEZOELECTRIC CONSTANTS

	25°C	and the second second	700°C	950°C		d	- d ₁₁	0	d ₁₄	0
d ₁₁ ^{a,b} [pC/N]	4.5	4.5	4.5	4.1°	d =	0	0	0	0	- d ₁₄
d ₁₄ ^a [pC/N]	1.9	1.6	1.4°	1.0 ^c		0	0	0	0	0

THERMAL EXPANSION COEFFICIENTS

at $T_0 = 25^{\circ}C, -253^{\circ}C < T < 900^{\circ}C$

	α _{ii} (T ₀) [10 ⁻⁶ K ⁻¹]	Τα _{ii} ⁽¹⁾ [10 ⁻⁹ K ⁻²]	Tα _{ii} ⁽²⁾ [10 ⁻¹² K ⁻³]	Τα _{ii} ⁽³⁾ [10 ⁻¹⁵ Κ ⁻⁴]
α11	12.78	10.6	- 16.1	12.3
α33	3.69	5.0	- 5.4	3.6

THERMAL CONDUCTIVITY

	50°C	70°C	100°C	130°C	150°C	180°C	200°C
$\lambda_{11}[W m^{-1}K^{-1}]$	4.21	3.96	3.68	3.28	3.07	2.85	2.71
λ ₃₃ [W m ⁻¹ K ⁻¹]	6.66	6.14	5.66	5.00	4.78	4.27	4.02

	(λ 11	0	0)	
$\lambda =$	0	λ,,	$\begin{pmatrix} 0 \\ 0 \\ \lambda_{33} \end{pmatrix}$	
	0	0	λ33	

 $\alpha = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{33} \end{pmatrix}$ $\alpha_{ii}(T) = \alpha_{ii}(T_0) + \sum_{n=1}^{3} \left[T\alpha_{ii}^{(n)} \cdot (T - T_0)^n \right]$

ELECTRIC RESISTIVITY

	25°C	200°C	300°C	500°C	700°C	900°C
ρ[Ωm]	> 10 ¹⁵	> 10 ¹³	> 10 ¹¹	> 10 ⁹	> 10 ⁷	> 10 ⁵

ELASTIC CONSTANTS at $T_0 = 25^{\circ}C$, $-50^{\circ}C < T < 700^{\circ}C$

	C _{ij}	Tc _{ij} ⁽¹⁾	Tc _{ij} ⁽²⁾	Tc _{ij} ⁽³⁾
	[GPa]	[10 ⁻⁶ K ⁻¹]	[10 ⁻⁹ K ⁻²]	[10 ⁻¹² K ⁻³]
C11E	66.58	- 44.1	- 28.5	- 59.4
C12 ^E	21.81	- 226.7	- 70.8	- 205.7
C ₁₃ E	24.87	- 57.6	41.3	- 109.9
C ₁₄ Eb	3.91	507.2	280.6	- 99.9
C33 ^E	102.13	- 127.5	- 18.3	- 134.8
C ₄₄ E	37.66	- 0.4	- 43.8	- 37.1
C66 ^E	22.38	44.9	- 7.9	11.9

(12)

$\mathbf{c}_{ij}(\mathbf{T}) = \mathbf{c}_{ij}(\mathbf{T}_0) \left[1 + \mathbf{c}_{ij}(\mathbf{T}_0) \right] $	$\cdot \sum_{n=1}^{3} Tc_{ij}^{(n)} \cdot (T - T_0)^n $
---	---

	Sij	Ts _{ij} ⁽¹⁾	Ts _{ij} ⁽²⁾	Ts _{ij} ⁽³⁾
	[10 ⁻¹² m ² N ⁻¹]	[10 ⁻⁶ K ⁻¹]	[10 ⁻⁹ K ⁻²]	[10 ⁻¹² K ⁻³]
S ₁₁ E	17.93	22.4	30.5	62.4
S ₁₂ E	- 4.82	- 210.5	- 0.1	- 271.3
S13E	- 3.19	181.6	78.2	322.2
S14 ^{Eb}	- 2.36	482.2	315.5	7.9
s33 ^E	11.35	147.9	14.1	261.5
s44 ^E	27.04	18.7	54.7	52.0
S ₆₆ E	45.51	- 26.9	24.0	- 8.3

.....

RELATIVE DIELECTRIC CONSTANTS

at $T_0 = 25^{\circ}C$, 1 kHz

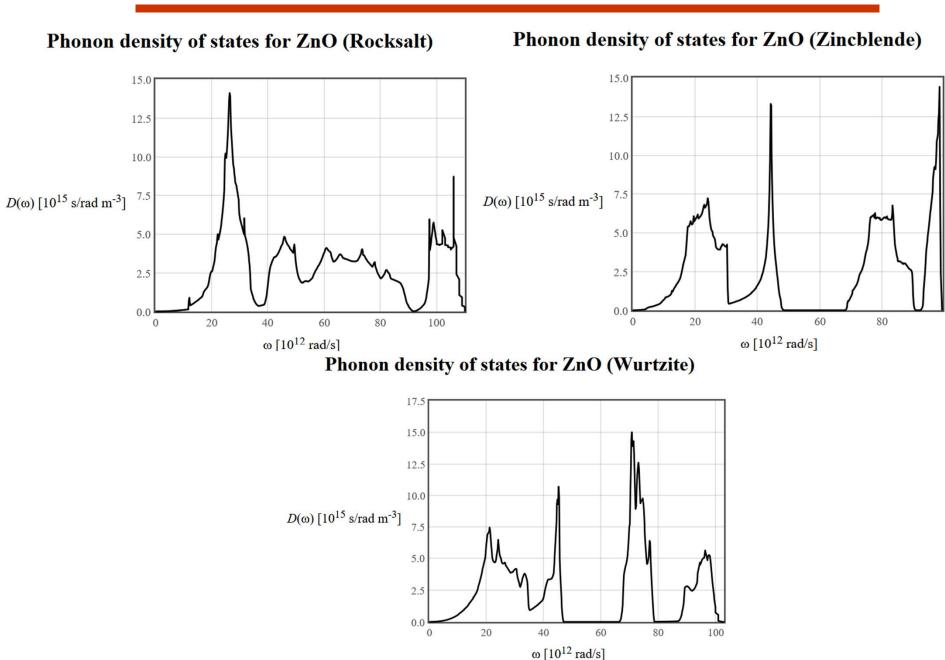
E11T	6.1	ε ₁₁ ^S	5.8
ε ₃₃ ^T	6.6	ε ₃₃ ^S	6.6

	(S ₁₁	S12	S13	S14	0	0
	S ₁₂	SII	S ₁₃	- S ₁₄	0	0
c	S ₁₃	S ₁₃	S ₃₃	0	0	0
5 =	S ₁₄	- S ₁₄	0	S44	0	0
	0	0	0	0	S ₄₄	$2s_{14}$
	0	0	0	0	$2s_{14}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 2s_{14} \\ 2(s_{11} - s_{12}) \end{array}$

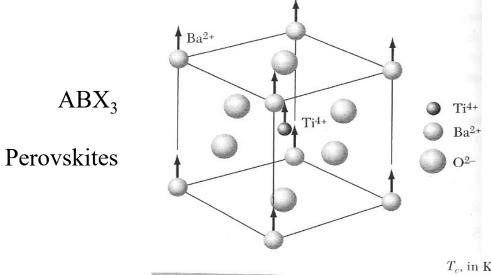
$\mathbf{s}_{ij}(\mathbf{T}) = \mathbf{s}_{ij}(\mathbf{T}_0)$	$\left[1 + \sum_{n=1}^{3} Ts_{ij}^{(n)} \cdot (T - T_{0})^{n}\right]$	
---	---	--

 $\varepsilon = \begin{pmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{11} & 0 \\ 0 & 0 & \varepsilon_{33} \end{pmatrix}$

ZnO



Ferroelectricity

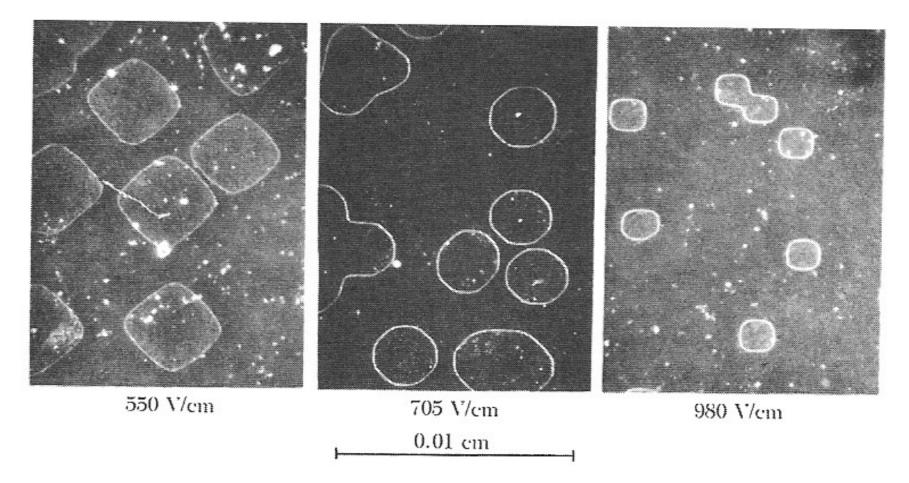


Spontaneous polarization Analogous to ferromagnetism Structural phase transition T_c is transition temperature

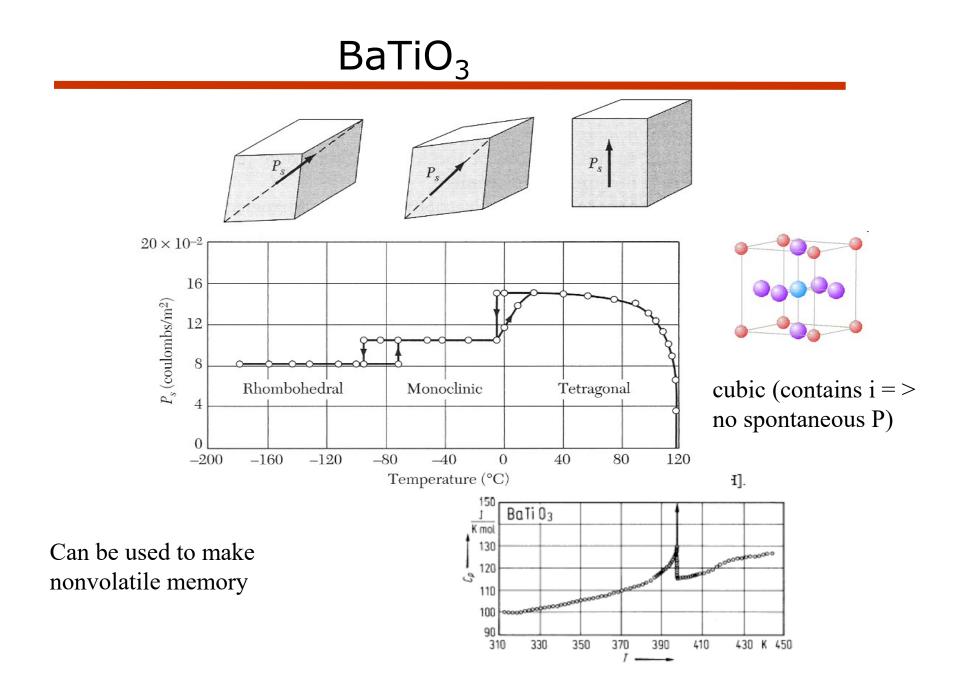
Electric field inside the material, is not conducting

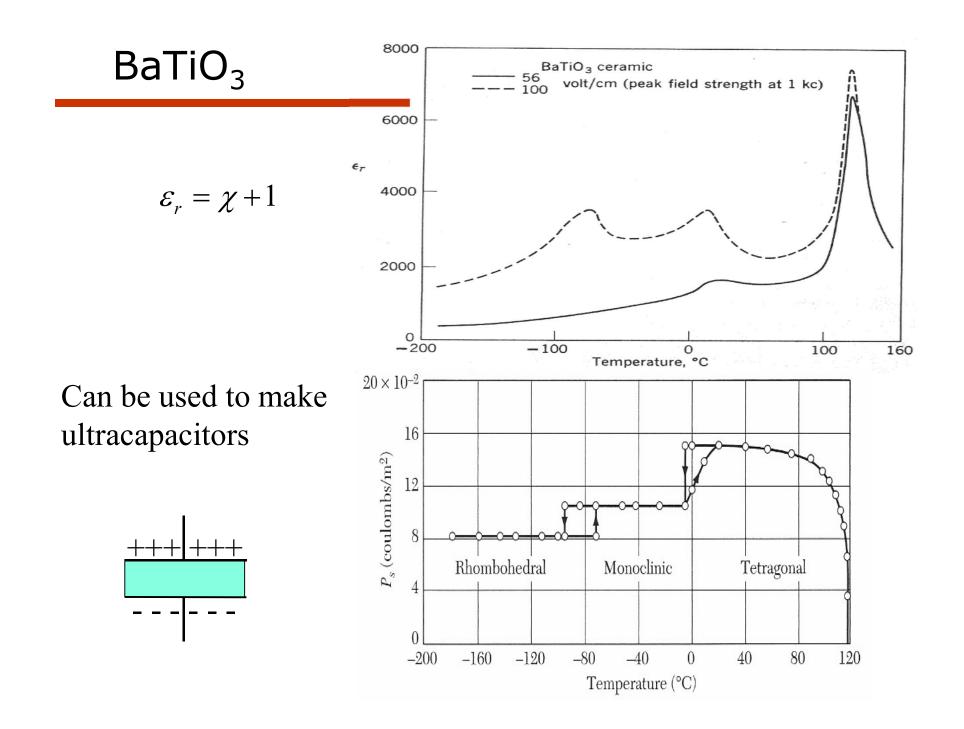
		T_c , in K	P_s , in μ C cm	n^{-2} , at T K
KDP type	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	123	4.75	[96]
	KD_2PO_4	213	4.83	[180]
	RbH_2PO_4	147	5.6	[100]
	KH ₂ AsO ₄	97	5.0	[78]
	GeTe	670		[10]
TGS type	Tri-glycine sulfate	322	2.8	[29]
	Tri-glycine selenate	295	3.2	[283]
Perovskites	$BaTiO_3$	408	26.0	[296]
	$KNbO_3$	708	30.0	[523]
	$PbTiO_3$	765	>50	[296]
	$LiTaO_3$	938	50	[200]
	LiNbO ₃	1480	71	[296]

Ferroelectric domains



Increasing the electric field polarizes the material.

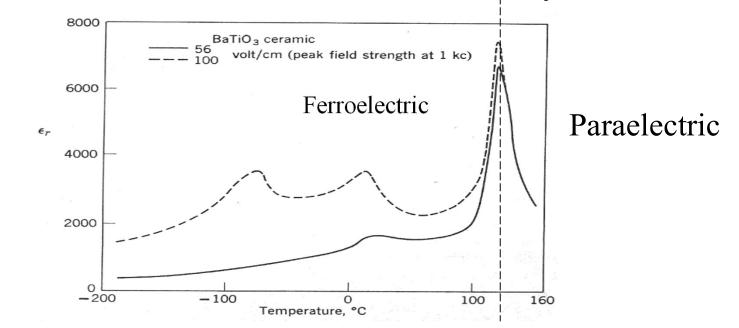


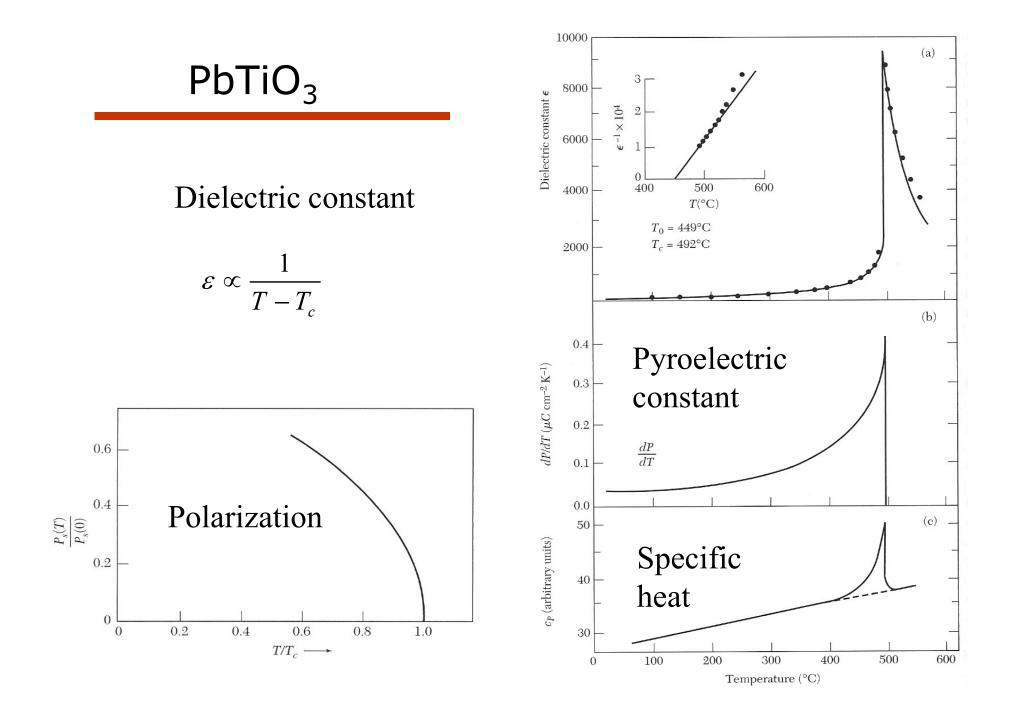


Above T_c , BaTiO₃ is paraelectric. The susceptibility (and dielectric constant) diverge like a Curie-Weiss law.

$$\chi \propto \frac{1}{T - T_c} \qquad \qquad \varepsilon = (1 + \chi) \varepsilon_0$$

This causes a big peak in the dielectric constant at T_c .





Waves and particles

The eigen function solutions of the wave equation are plane waves. The scattering time is one over the rate for scattering from a given plane wave solution to any other.

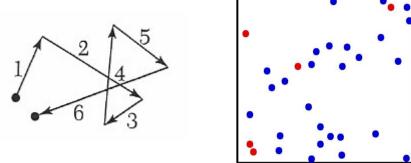
Phonons are particles. The scattering time is the time before the phonons scatter and randomly change energy and momentum.

$$E = \hbar \omega$$
$$\vec{p} = \hbar \vec{k}$$

The average time between scattering events is $\tau_{sc} = 1/\Gamma$

Treat phonons as an ideal gas of particles that are confined to the volume of the solid.

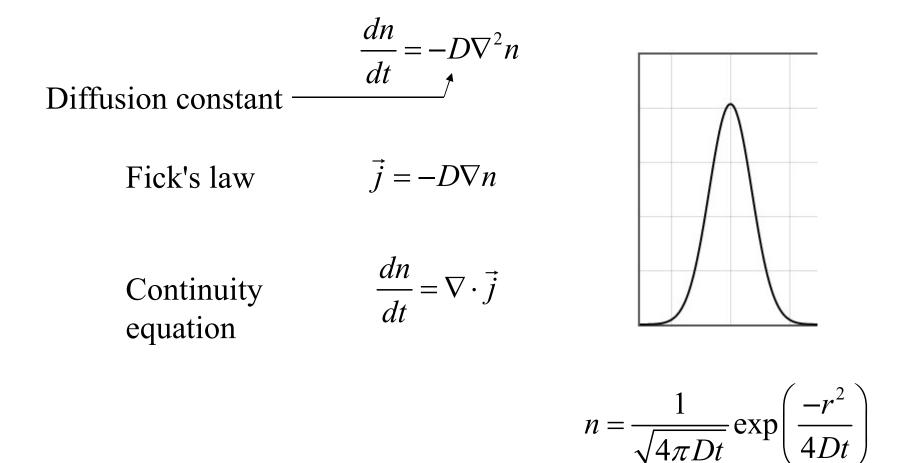
Phonons move at the speed of sound. They scatter due to imperfections in the lattice and anharmonic terms in the Hamiltonian.



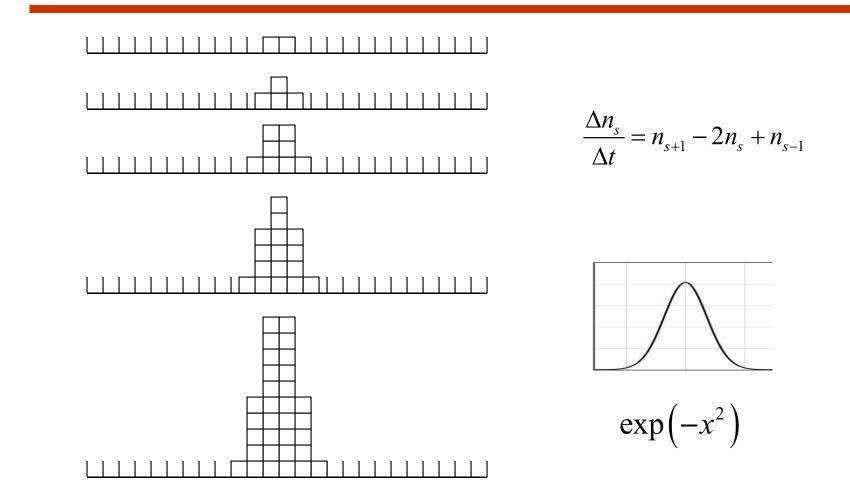
The average time between scattering events is τ_{sc}

The average distance traveled between scattering events is the mean free path: $l = v\tau_{sc} \sim 10$ nm

Diffusion equation/ heat equation



Random walk



Central limit theorem: A function convolved with itself many times forms a Gaussian

Thermal conductivity

 $\vec{j}_U = \vec{E}\vec{j}$ Average particle energy

 $u = \overline{E}n$ internal energy density

$$\vec{j}_U = -\overline{E}D\nabla n = -D\nabla u$$

$$\vec{j}_U = -D\frac{du}{dT}\nabla T = -Dc_v\nabla T$$

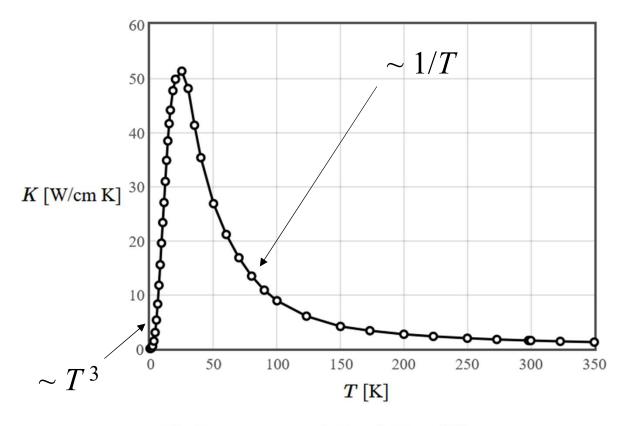
$$\vec{j}_U = -K\nabla T$$

Thermal conductivity _______

$$K = Dc_v$$

$$K \to 0$$
 as $T \to 0$

Thermal conductivity $\vec{j}_U = -K\nabla T$



The thermal conductivity of silicon.[1]

Thermal conductivity

$$\vec{j}_U = -K\nabla T$$

Material	Thermal conductivity W/(m	·K)
Glass	1.1	
Concrete, stone	1.7	
Ice	2	
Sandstone	2.4	
Sapphire	35 LOG K	
Stainless steel	12.11 ~ 45.0	
Lead	35.3	
Aluminum	237	
Aluminum alloys	s 120—180	
Gold	318	$\log T$ [K]
Copper	401	
Silver	429	
Diamond	900 - 2320	
Graphene	(4840±440) - (5300±	-480)