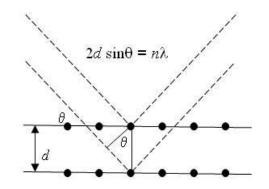
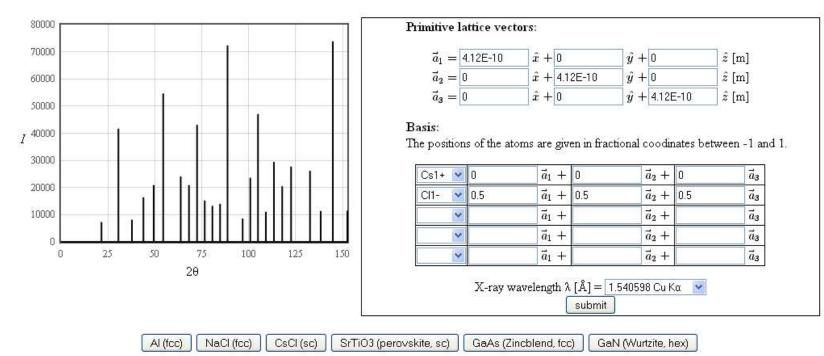

Technische Universität Graz

Institute of Solid State Physics

Diffraction Phonons


Powder diffraction

Powder diffraction is performed on a powder of many small crystals. Ideally, every possible crystalline orientation is represented equally in a powdered sample. The relative intensities of the diffraction peaks indicate which crystal structures are present.

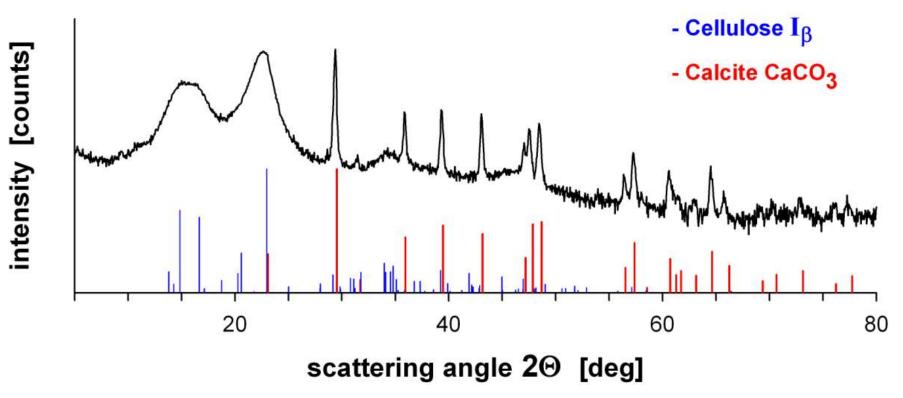


Powder diffraction

For powder diffraction, a crystal is ground into a fine powder so that there are many small crystals with random orientations. X-rays strike the surface of the sample at an angle θ and an x-ray detector is placed at an angle θ to the surface. Only planes parallel to the surface will diffract x-rays to the detector.

Since there are many small crystals with random orientations in the sample, all possible crystal planes that can diffract the x-rays will contribute to the measured signal when θ satisifies the Bragg condition. The form below can calculate the powder diffraction pattern for any crystal with up to five atoms per primitive unit cell. Some buttons are provided that load the form with the data for certain crystals.

http://rruff.geo.arizona.edu/AMS/all_minerals.php

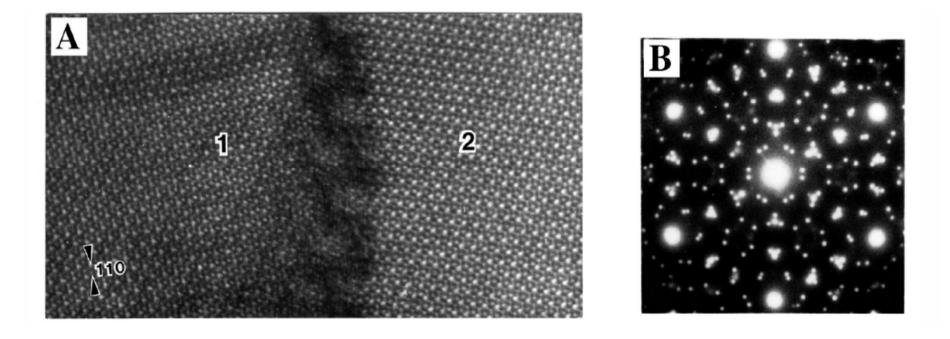

American Mineralogist Crystal Structure Database

Abellaite	Abelsonite	Abenakiite-(Ce)	Abernathyite	Abhurite						
Abswurmbachite	Acanthite	Acetamide	Acetylene-hydrate	Achavalite						
Actinium	Actinolite	Acuminite	Adachiite	Adamantane						
Adamantane-methane- hydrate	Adamite	Adamsite-(Y)	Adelite	Admontite						
Adolfpateraite	Adranosite	Adranosite-(Fe)	Aegirine	Aenigmatite						
Aerinite	Aerugite	Aechunite (12)	Aacchunita_(V)	Afghanite						í
Afmite	Afwillite	A	merican Mine	ralogist	Crystal St	ructure [)ato	ıha	Se	
Agardite-(Y)	Agrellite	/ \\		laiogisi	crystar on			100	50	ł
Ahlfeldite	Ahrensite									
<u>Ajoite</u>	Akaganeite 4 matching	records for this search.								
Akhtenskite	Akimotoite									
Aktashite	Alabandite 🗌 Aluminiu	<u>m</u>								
Albertiniite	Albite 🛞 Wyckof	FRWG								
Alcaparrosaite	Alflarsenite									
Algodonite	Alinite Crysta.	l Structures 1 (196	53) 7-83							
Allanite-(Ce)	Allanite-(La) Second	edition. Interscie								
Allantoin	Allargentum Cubic	closest packed, ccp	, str Wyckoff R W							
Alloriite	Allugivito	ase_code_amcsd 0011	Crystal Str							
Almeidaite	Alnaperboe		Second euro		cience Publis		lork,	New	York	
Altaite	Althausite 4.04958	8 4.04958 4.04958 9			ccp, structur	e				
<u>Alum-(Na)</u>	Aluminite atom	x y z	_database_c	ode_amcsd 0	0011137					
Aluminoceladonite	Aluminoceri Al (0 0 0	CELL PARAME		0496 4.0496	4,0496	90.0	200	90.00	00 000
Aluminotaramite	Aluminum	d and data (ifour Test f			4.0496	4.0496	90.0	000	90.00	90.000
Alumotantite	Alumice	d AMC data (View Text Fi			1.541838					
Amarantite	And mice	d CIF data (View Text File								
Americium	LIII COTCO	d diffraction data (View T	ext File Doncity (g/		2.698					
	View JMC	<u>DL 3-D Structure</u> (pamal	ink) MAX. ABS. I			34.6143	9413			
				.177						
			RIR based o	n corundum	from Acta Cry	stallograp	nica /	438	(1982)	733-739
						D-SPACING	Н	К		ltiplicity
			3	8.50	100.00	2.3380	1	1	1	8
		•	4	4.76	47.49	2.0248	2	0	0	6
			6	5.16	28.01	1.4317	2	2	0	12
			(i)	8.30	30.71	1.2210	3	1	1	24
			8	2.52	8.74	1.1690	2	2	2	8
				-	Bob Downs, Ran et al. (1993)	-				

copy paper

Powder diffraction

Phase identification


Every crystal has a specific "fingerprint" given by the positions and intensities of the diffraction peaks. The composition of a multi-phase specimen can be determined by fitting its diffraction pattern to the diffraction patterns of pure crystals which can be looked up in a database.

International Centre for Diffraction Data www.icdd.com

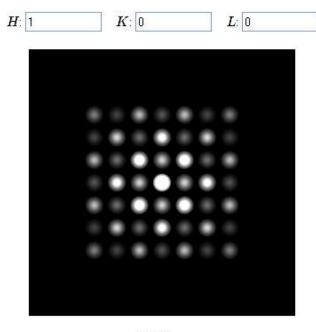
550,000 reference materials

Phase transitions, thermal expansion, piezoelectricity, piezomagnetism, bulk modulus, compliance tensor can be measured.

Electron diffraction in a TEM

The wavelength of the electrons is typically much smaller than the lattice spacing. The diffraction peaks in the plane perpendicular to k are observed.

Electron diffraction


In electron diffraction, the intensity of a diffraction peak at reciprocal lattice vector \vec{G} is the square of the structure factor, $n_{\vec{\sigma}}$.

$$n_{\vec{G}} = \frac{1}{V} \sum_{j} f_j \Big(\vec{G}\Big) e^{-i\vec{G}\cdot\vec{r}_j} = \frac{1}{V} \sum_{j} f_j \Big(\vec{G}\Big) \Big(\cos\Bigl(\vec{G}\cdot\vec{r}_j\Bigr) - i \sin\Bigl(\vec{G}\cdot\vec{r}_j\Bigr) \Big)$$

Here V is the volume of the primitive unit cell, j sums over the atoms in the basis, \vec{r}_j are the positions of the atoms in the basis, and $f_j(\vec{G})$ are the electron atomic form factors evaluated at \vec{G} .

The form below calculates the electron structure factors based on this formula. The crystal structure is specified by providing the primitive lattice vectors and the positions of the atoms in the basis. A basis of up to five atoms can be calculated. The script first calculates the primitive reciprocal lattice vectors and from them calculates the reciprocal lattice vectors $\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$.

On this page, the direction of the incoming electrons is given in terms of the primitive lattice vectors in reciprocal space, $H\vec{b}_1 + K\vec{b}_2 + L\vec{b}_3$. Usually the direction of the incoming electrons are given in terms of the conventional lattice vectors. Be aware that the [100] is a (usually) different direction if primitive lattice vectors are used than if conventional lattice vectors are used.

Primitive lattice vectors:

$\vec{a}_1 = 4.12\text{E-10}$	$\hat{x} + 0$	$\hat{y} + 0$	\hat{z} [m]
$\vec{a}_2 = 0$	\hat{x} + 4.12E-10	$\hat{y} + 0$	\hat{z} [m]
$\vec{a}_3 = 0$	$\hat{x} + 0$	\hat{y} + 4.12E-10	\hat{z} [m]

Basis:

The positions of the atoms are given in fractional coodinates between -1 and 1.

Cs 💌	0	$\vec{a}_1 + $	0	$\vec{a}_2 +$	0	\vec{a}_3
CI 🔽	0.5	$\vec{a}_1 + $	0.5	$\vec{a}_2 + $	0.5	\vec{a}_3
~		$\vec{a}_1 + $		$\vec{a}_2 +$		\vec{a}_3
*		$\vec{a}_1 + $		$\vec{a}_2 +$		\vec{a}_3
*		$\vec{a}_1 + $		$\vec{a}_2 +$		\vec{a}_3

submit

Neutron diffraction

Typically a nuclear reactor is used as the neutron source

There are different atomic form factors for neutrons than for x-rays.

Determine the positions of H in biological samples.

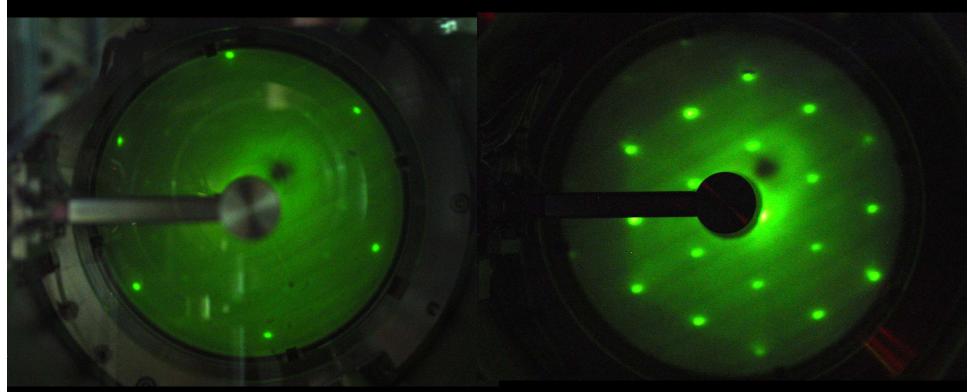
Can for example distinguish between Fe and Co which have similar atomic form factors for x-rays.

Structure factor for neutrons

The structure factor for neutrons can be calculated with the following formula,

$$F_{ec{G}} = \sum_{j} b_{j} e^{-iec{G}\cdotec{r}_{j}} = \sum_{j} b_{j} \left(\cos \Bigl(ec{G}\cdotec{r}_{j}\Bigr) - i \sin \Bigl(ec{G}\cdotec{r}_{j}\Bigr)
ight).$$

where \vec{r}_j defines the position of the atom j and \vec{G} is the reciprocal lattice vector. \vec{b}_j is called the neutron scattering length, it depends on the spin-state of the neutron-nucleus system and the isotope the neutron is scattered from. The scattering lengths can be looked up at the <u>NIST Center for Neutron Research</u>.


The form below calculates the neutron structure factors. The script first calculates the reciprocal lattice vectors and from them calculates the reciprocal lattice vectors $\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$. The structure factors are calculated for a few reciprocal lattice vectors and listed in a table.

	= 4.1	2E-10	\hat{x} +	0		\hat{y} +	0		<i>î</i> [m]
\vec{a}_2	= 0		\hat{x} +	4.128	-10	\hat{y} +	0		<i>î</i> [m]
\vec{a}_3	=0		\hat{x} +	0		\hat{y} +	4.12E-	10	<i>î</i> [m]
Pb Ti		0		$\vec{a}_1 + \vec{a}_1 +$			$\vec{a}_2 + \vec{a}_2 + \vec$	(
e positi	ons of	the ator	ns are	given	in fra	ctional	coodi	nates l	between
								(]
0		0		$\vec{a}_1 +$	-		$\vec{a}_2 +$	-	
0	~	0.5		$\vec{a}_1 +$	0		$\vec{a}_2 +$	0.5	
0	~	0.5		$\vec{a}_1 +$	0.5		$\vec{a}_2 +$	0	
				$\vec{a}_1 +$			$\vec{a}_2 +$		
	~			7 1			$\vec{a}_2 +$		
0				$\vec{a}_1 +$	L				

LEED

Low Energy Electron Diffraction

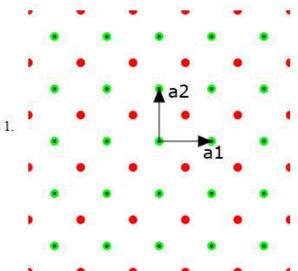
 $100 \text{ V} \rightarrow k \sim 5 \times 10^{10} \text{ m}^{-1}$

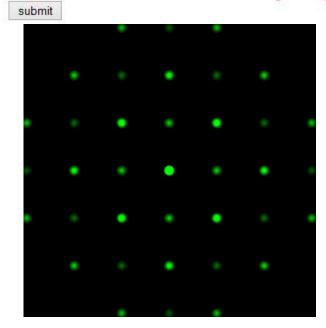
Clean Pd (111)

Pd (111) + 0.3 ML VO_x

LEED is surface sensitive

LEED

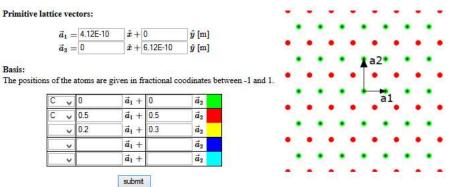

Energy of the electron beam: 100 [eV] Primitive lattice vectors:


$\vec{a}_1 =$	4.12E-10	\hat{x} +	0	ŷ [m]
$\vec{a}_2 =$	0	x +	4.12E-10	ŷ [m]

Basis:

The positions of the atoms are given in fractional coodinates between -1 and 1.

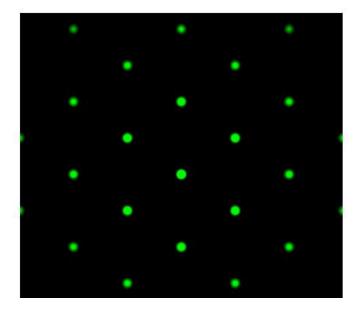
Cs ∨	0	$\vec{a}_1 + $	0	\vec{a}_2
CI 👻	0.5	$\vec{a}_1 +$	0.5	\vec{a}_2
¥		$\vec{a}_1 + $	6	\vec{a}_2
~		$\vec{a}_1 +$		\vec{a}_2
~	S	$\vec{a}_1 + $	6	\vec{a}_2


Atomic beams

Hydrogen and Helium are used for diffraction studies

$$E = \frac{1}{2}mv^{2} = \frac{p^{2}}{2m} = \frac{\hbar^{2}k^{2}}{2m} = \frac{\hbar^{2}}{2m\lambda^{2}}$$

Low energies can be used for delicate samples. Measure the surface like LEED.


Forbidden reflections

Primitive reciprocal lattice vectors

 $\vec{b}_1 = 2\pi \frac{R \vec{a}_2}{\vec{a}_1 \cdot R \vec{a}_2} = 1.525 \text{e}^{+10} \hat{k}_x + 0.000 \hat{k}_y \text{ [m}^{-1]}$ $\vec{b}_2 = 2\pi \frac{R \vec{a}_1}{\vec{a}_1 \cdot R \vec{a}_2} = 0.000 \hat{k}_x + -1.027 \text{e}^{+10} \hat{k}_y \text{ [m}^{-1]}$ $\text{with} \qquad R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Low Energy Electron Diffraction

Forbidden reflections

 $n_{u.c.}(ec{r}) = \sum_j Z_j \delta(ec{r} - ec{r}_j).$

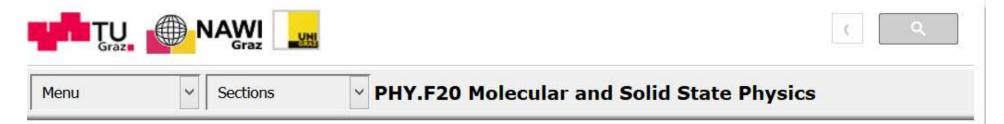
Primitive reciprocal lattice vectors

$$\begin{split} \vec{b}_1 &= 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 3.939 \ \hat{k}_x + -2.275 \text{e}{+}10 \ \hat{k}_y + 0.000 \ \hat{k}_z \ [\text{m}^{-1}] \\ \vec{b}_2 &= 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 3.939 \ \hat{k}_x + 2.275 \ \hat{k}_y + 0.000 \ \hat{k}_z \ [\text{m}^{-1}] \\ \vec{b}_3 &= 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 0.000 \ \hat{k}_x + 0.000 \ \hat{k}_y + 1.212 \text{e}{+}10 \ \hat{k}_z \ [\text{m}^{-1}] \end{split}$$

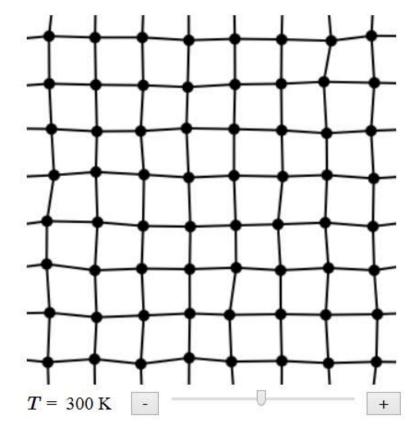
$$n_{ec{G}} = \sum_j Z_j \exp(-iec{G}\cdotec{r}_j).$$

ma a ol lo a
The value of $ n_{\vec{c}} $ for the
000 diffraction peak is
the total number of
electrons in the primitive
unit cell. The intensities
of the peaks in an x-ray
diffraction experiment
are proportional to
$ n_{\tilde{G}} ^2$. Note that
elements with more
electrons produce
stronger diffraction
intensities.

hkl	$ ec{G} $ Å ⁻¹	$ n_{\vec{G}} $	$ n_{\vec{G}} ^2$	$\operatorname{Re}\{n_{\vec{G}}\}$	$\operatorname{Im}\{n_{\vec{G}}\}$
000	0.000	75.94	5767	75.94	0.000
0-10	4.549e-10	37.87	1434	-37.87	0.02201
010	4.549e-10	37.87	1434	-37.87	-0.02201
0-20	9.098e-10	38.17	1457	-38.17	0.04379
020	9.098e-10	38.17	1457	-38.17	-0.04379
0-30	1.365e-9	75.94	5767	75.94	-0.1318
030	1.365e-9	75.94	5767	75.94	0.1318
0-3-1	1.212	0.3909	0.1528	0.02780	0.3899
0-31	1.212	0.3914	0.1532	-0.02727	0.3904
0-2-1	1.212	42.85	1836	-7.648	42.16
0-21	1.212	42.74	1827	7.551	42.07
0-1-1	1.212	43.01	1850	7.610	-42.33
0-11	1.212	42.96	1845	7,561	-42.29
00-1	1.212	8.896e-8	7.914e-15	-1.573e-8	8.756e-8
001	1.212	8.896e-8	7.914e-15	-1.573e-8	-8.756e-8
01-1	1.212	42.96	1845	-7.561	42.29
011	1.212	43.01	1850	7.610	42.33
02-1	1.212	42.74	1827	7.551	-42.07
021	1.212	42.85	1836	-7.648	-42.16
03_1	1 212	∩ 301⊿	0.1532	_0.02727	_0 3004


Structure factors

Technische Universität Graz


Institute of Solid State Physics

Phonons

Normal Modes and Phonons

At finite temperatures, the atoms in a crystal vibrate. In the simulation below, the atoms move randomly around their equilibrium positions.

http://lampx.tugraz.at/~hadley/ss1/phonons/phonon_script.php

Vibrations of a mass on a spring

$$\int \frac{d^2 x}{dt^2} = -Cx$$

The solution has the form

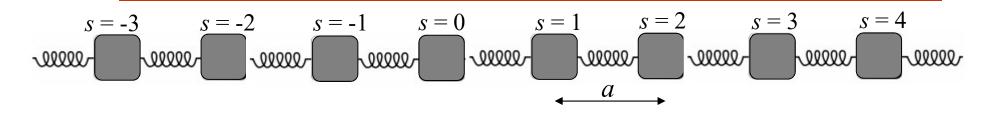
$$x = A e^{-i\omega t}$$

$$-\omega^2 m A e^{-i\omega t} = -C A e^{-i\omega t}$$
$$\omega = \sqrt{\frac{C}{m}}$$

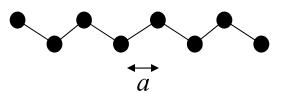
Coupled masses

Newton's law

$$M\frac{d^{2}x_{1}}{dt^{2}} = -Cx_{1} + C(x_{2} - x_{1}) \qquad \qquad M\frac{d^{2}x_{2}}{dt^{2}} = -Cx_{2} + C(x_{1} - x_{2})$$


assume harmonic solutions

 $x_1(t) = A_1 \exp(i\omega t)$ $x_2(t) = A_2 \exp(i\omega t)$


$$-\omega^{2}MA_{1}e^{i\omega t} = -2CA_{1}e^{i\omega t} + CA_{2}e^{i\omega t}$$
$$-\omega^{2}MA_{2}e^{i\omega t} = -2CA_{2}e^{i\omega t} + CA_{1}e^{i\omega t}$$
$$-\omega^{2}M\begin{bmatrix}A_{1}\\A_{2}\end{bmatrix} = \begin{bmatrix}-2C & C\\ C & -2C\end{bmatrix}\begin{bmatrix}A_{1}\\A_{2}\end{bmatrix}$$
Find the eigenvectors of this matrix

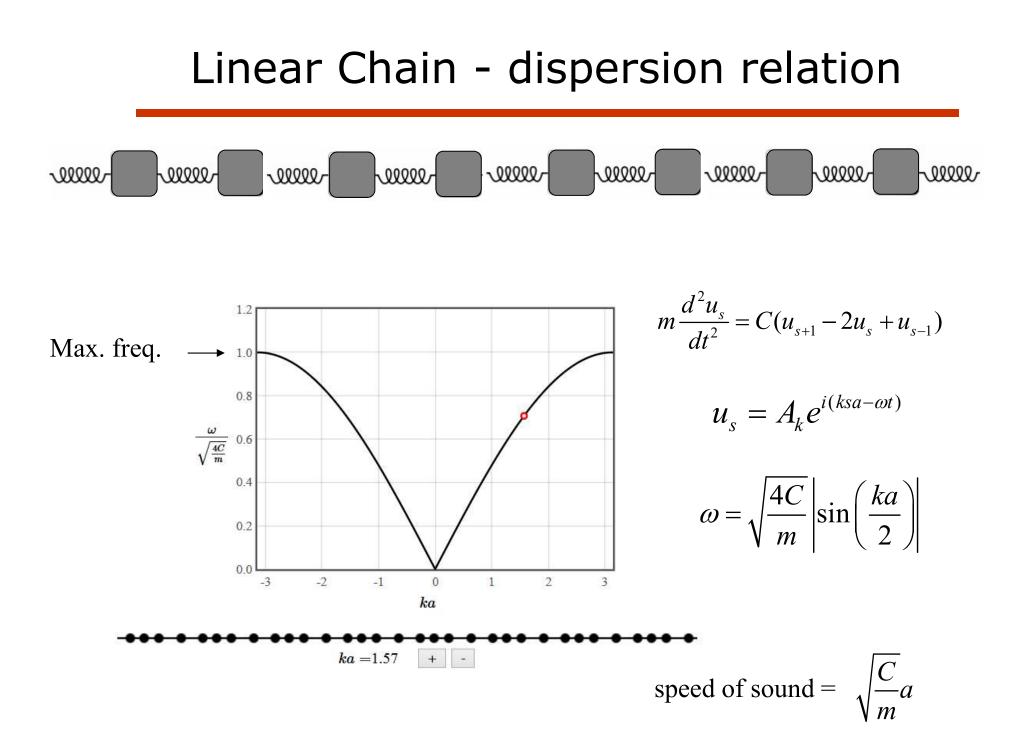
The masses oscillate with the same frequency but different phases

Linear Chain

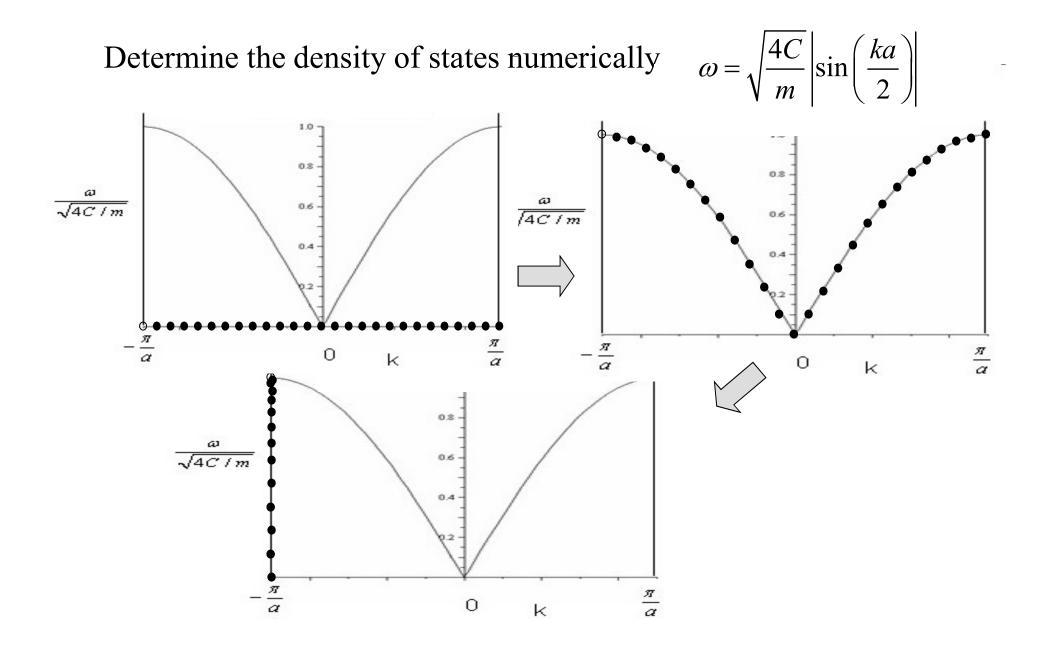
solution:
$$u_{s} = A_{k}e^{i(ksa-\omega t)} = A_{k}e^{iksa}e^{-i\omega t}$$
$$\underbrace{-\pi}_{a} \frac{-8\pi}{L} \frac{-6\pi}{L} \frac{-4\pi}{L} \frac{-2\pi}{L} \frac{0}{2\pi} \frac{2\pi}{L} \frac{4\pi}{L} \frac{6\pi}{L} \frac{8\pi}{L} \frac{\pi}{a} \frac{\pi}{a} k$$

Linear Chain

$$s = -3 \qquad s = -2 \qquad s = -1 \qquad s = 0 \qquad s = 1 \qquad s = 2 \qquad s = 3 \qquad s = 4$$

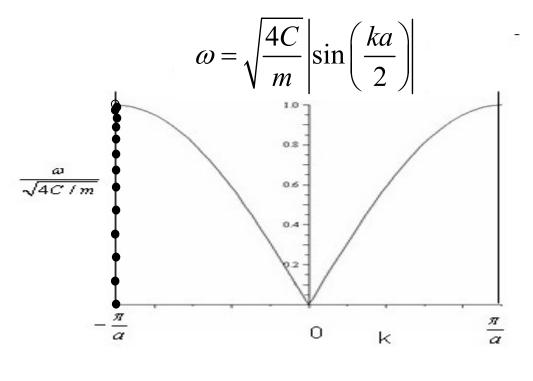

$$m \frac{d^2 u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$$
solutions: $u_s = A_k e^{i(ksa - \omega t)}$

$$-\omega^2 m e^{i(ksa - \omega t)} = C(e^{i(k(s+1)a - \omega t)} - 2e^{i(ksa - \omega t)} + e^{i(k(s-1)a - \omega t)})$$

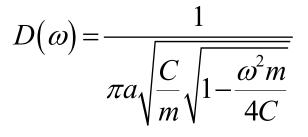

$$-\omega^2 m = C(e^{ika} - 2 + e^{-ika})$$

$$\omega^2 m = 2C(1 - \cos(ka)) \qquad \sin^2 \frac{ka}{2} = \frac{1}{2}(1 - \cos ka)$$

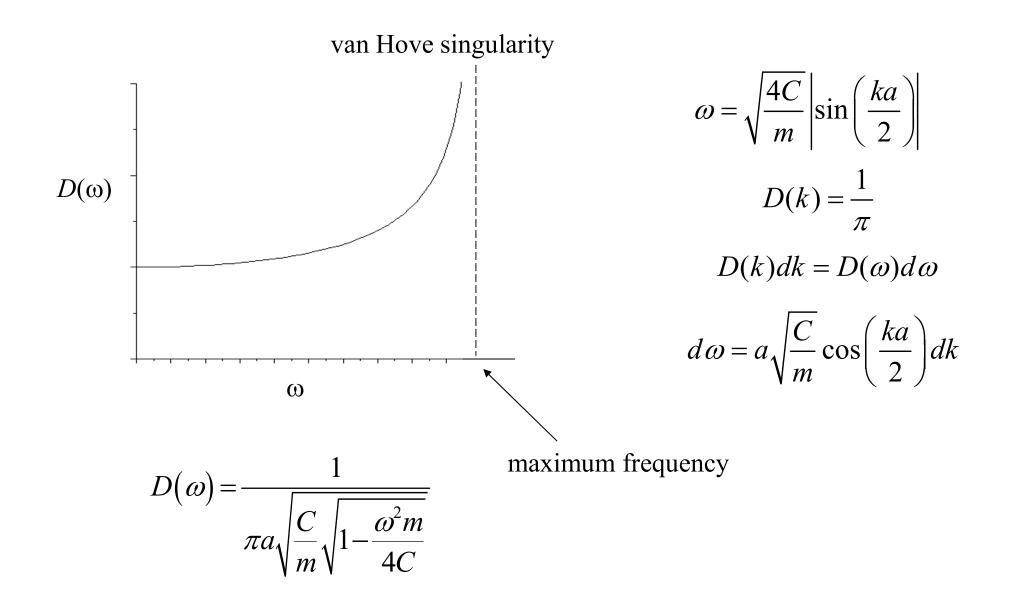
$$\omega = \sqrt{\frac{4C}{m}} \left|\sin\left(\frac{ka}{2}\right)\right|$$



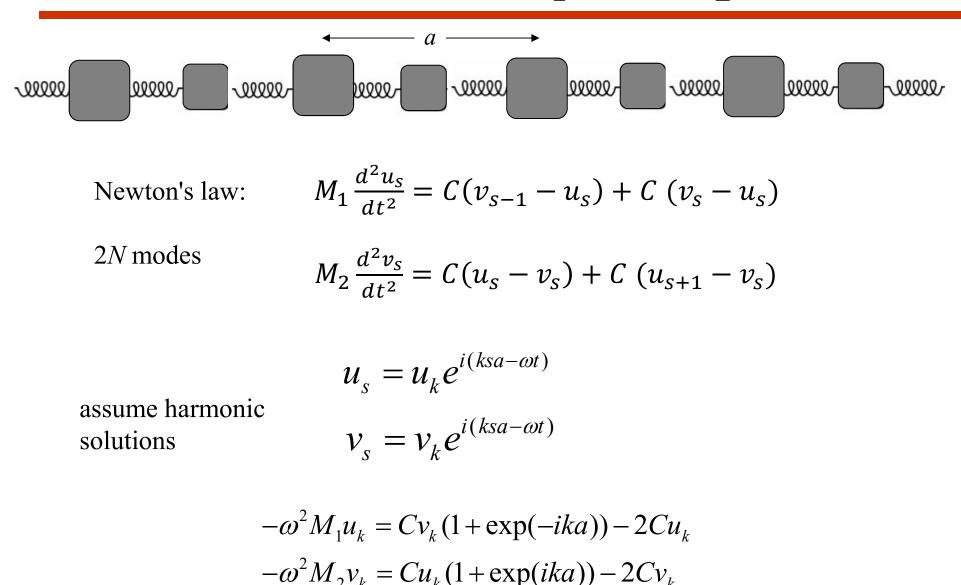
Linear Chain - density of states


Linear Chain - density of states

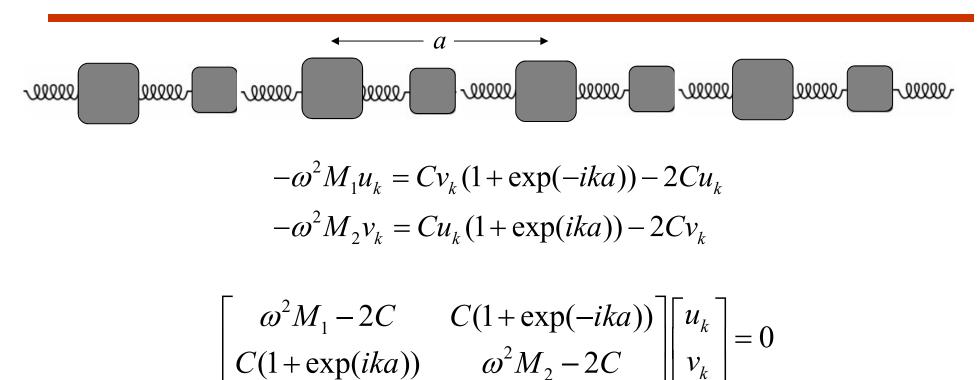
This case is an exception where the density of states can be determined analytically.


 $\omega = \sqrt{\frac{4C}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$ $D(k) = \frac{1}{\pi}$ $D(\omega) = D(k) \frac{dk}{d\omega}$ $\int \overline{C} \quad (ka) \quad A$

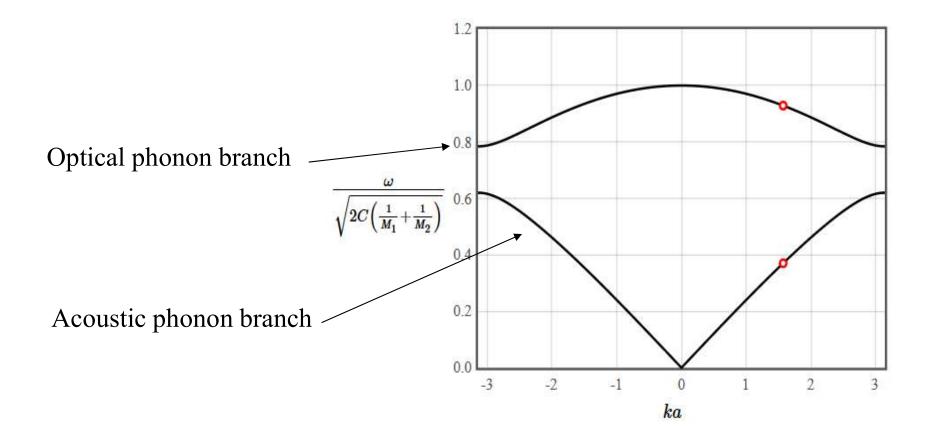
$$d\omega = a \sqrt{\frac{C}{m}} \cos\left(\frac{\kappa a}{2}\right) dk$$



for every k calculate the frequency


density of states

Linear chain M_1 and M_2


Linear chain M_1 and M_2

$$M_{1}M_{2}\omega^{4} - 2C(M_{1} + M_{2})\omega^{2} + 2C^{2}(1 - \cos(ka)) = 0$$

dispersion relation

$$\omega^{2} = C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm C \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} \left(\frac{ka}{2} \right)}{M_{1}M_{2}}}$$

