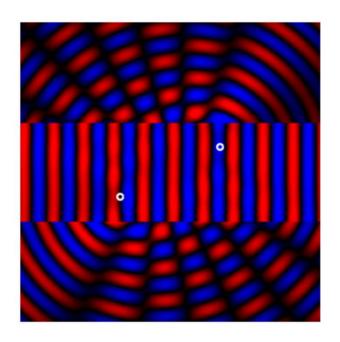


Technische Universität Graz

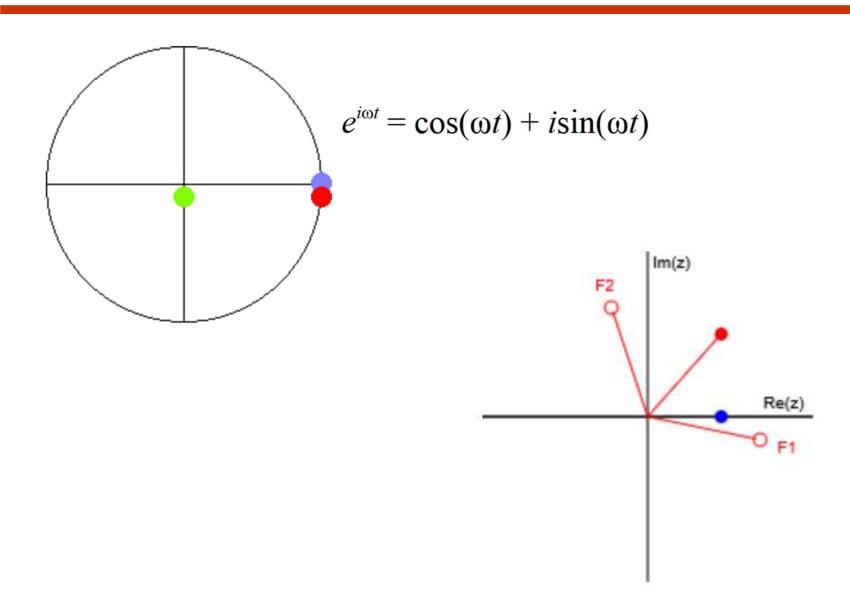
X-ray diffraction

Intensity of the scattered waves



$$F(\vec{r}) = F_1 \frac{\cos\left(\vec{k}_1' \cdot (\vec{r} - \vec{r}_1) - \omega t + \vec{k} \cdot \vec{r}_1\right)}{|\vec{r} - \vec{r}_1|} + F_2 \frac{\cos\left(\vec{k}_2' \cdot (\vec{r} - \vec{r}_2) - \omega t + \vec{k} \cdot \vec{r}_2\right)}{|\vec{r} - \vec{r}_2|}$$

Using complex numbers to describe oscillations



Intensity of the scattered waves

$$F(ec{r}) = rac{F_1}{R} \mathrm{cos} \Big(ec{k}' \cdot ec{r} - \omega t + (ec{k} - ec{k}') \cdot ec{r}_1 \Big) + rac{F_2}{R} \mathrm{cos} \Big(ec{k}' \cdot ec{r} - \omega t + (ec{k} - ec{k}') \cdot ec{r}_2 \Big).$$

Write in terms of complex exponentials

$$F(ec{r}) = rac{F_1}{R} \mathrm{exp} \Big(i \left(ec{k}' \cdot ec{r} - \omega t + (ec{k} - ec{k}') \cdot ec{r}_1
ight) \Big) + rac{F_2}{R} \mathrm{exp} \Big(i \left(ec{k}' \cdot ec{r} - \omega t + (ec{k} - ec{k}') \cdot ec{r}_2
ight) \Big)$$

Factor out *e*^{-iot}

$$F(ec{r}) = \left(rac{F_1}{R} ext{exp} \Big(i\left((ec{k} - ec{k}') \cdot ec{r}_1 \Big) \Big) + rac{F_2}{R} ext{exp} \Big(i\left((ec{k} - ec{k}') \cdot ec{r}_2 \Big) \Big) \Big) e^{-i\omega t} = \mathcal{A}(ec{r}) e^{-i\omega t}.$$

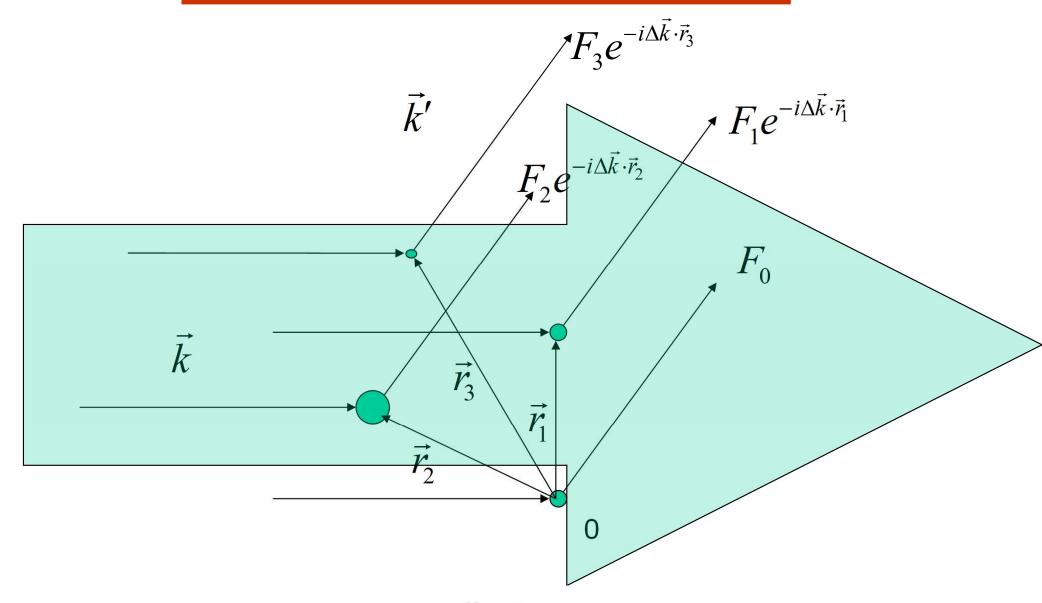
The intensity is the amplitude squared

$$I \propto \mathcal{A}^* \mathcal{A}$$
.

For many scatterers:

$$\mathcal{A} = \sum_{i=j}^{N} rac{F_{j}}{R} \mathrm{exp} \Big(i \left((ec{k} - ec{k}') \cdot ec{r}_{j}
ight) \Big)$$

Interference



Amplitude:
$$\mathcal{A} = \sum_{i=j}^{N} rac{F_j}{R} \exp \left(i \left((ec{k} - ec{k}') \cdot ec{r}_j
ight)
ight)$$

Elastic x-ray scattering

In elastic x-ray scattering, the amplitude of the scattering from a specific point is proportional to the electron density. Since the electron density is a continuous function, the amplitude of the scattered waves is written as a volume integral over the crystal.

$$\mathcal{A} \propto \int n(ec{r}') \exp\Bigl(i \left((ec{k}-ec{k}') \cdot ec{r}'
ight)\Bigr) d^3r'.$$

The electron density is a periodic function.

$$n(ec{r}') = \sum_{ec{G}} n_{ec{G}} \exp\Bigl(i ec{G} \cdot ec{r}'\Bigr)$$

$${\cal A} \propto \int \sum_{ec{G}} n_{ec{G}} \exp\Bigl(i \left((ec{G} + ec{k} - ec{k}') \cdot ec{r}'
ight) \Bigr) d^3r'.$$

Diffraction condition

$${\cal A} \propto \int \sum_{ec{G}} n_{ec{G}} \exp\Bigl(i \left((ec{G} + ec{k} - ec{k}') \cdot ec{r}'
ight) \Bigr) d^3r'.$$

There will be destructive interference unless

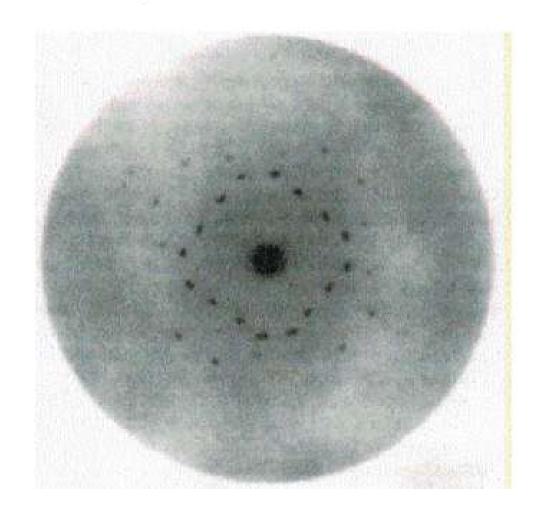
$$ec{G} + ec{k} - ec{k}' = 0,$$

diffraction condition:
$$\vec{G} = \vec{\Delta k}$$

The intensity of the peak at G is $|n_G|^2$

nobel prize 1914

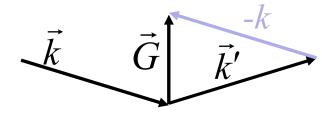
first diffraction experiment of Max von Laue 1912 ZnS single crystal, exposure time 30' the 5th diffraction pattern



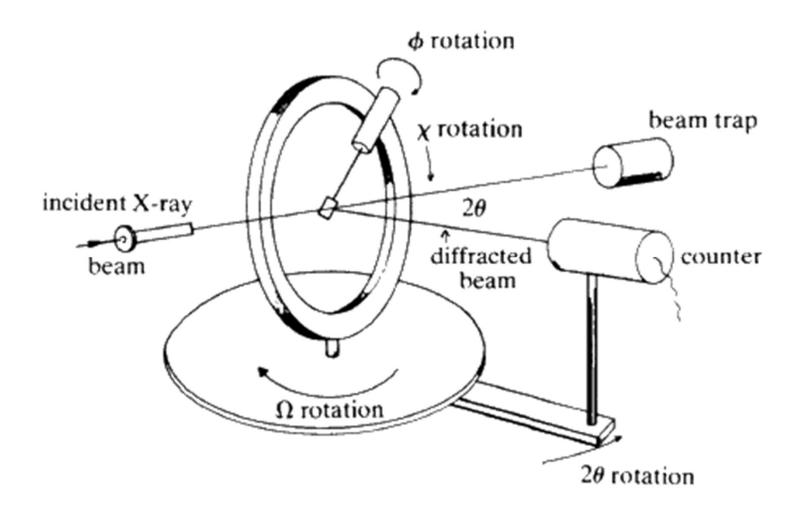
M. von Laue (1879-1960)

$$\vec{G} = \Delta \vec{k}$$

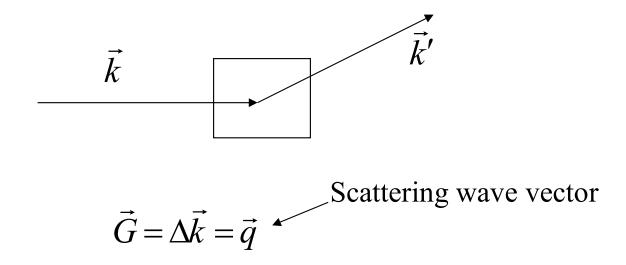
$$\vec{k}'$$
- $\vec{k} = \Delta \vec{k} = \vec{G}$



 $|\vec{k}| = |\vec{k}'|$ for elastic scattering



Single crystal diffraction



Every time a diffraction peak is observed, record G. When many G vectors are known, determine the reciprocal lattice.

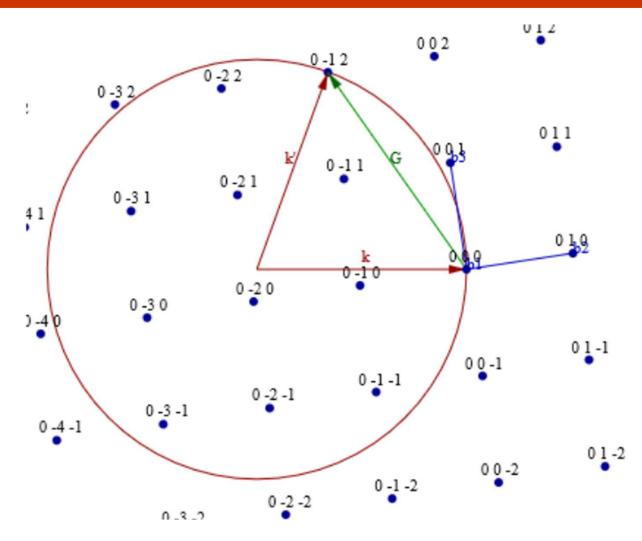
The sample and the detector must be turned to find all of the diffraction peaks.

Gx	Gy	Gz	$ n_G ^2$
2.4E10	2.4E10	0	10341
2.4E10	0	2.4E10	9989

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G} \cdot \vec{r})$$

Ewald sphere

$$\Delta \vec{k} = \vec{G}$$



Draw a vector representing the incoming radiation so that it ends at the origin. As the crystal is rotated around the origin, the condition for diffraction will be satisfied every time a reciprocal lattice point is on the sphere.

Determining real space primitive lattice vectors

$$\vec{a}_1 = 2\pi \frac{\vec{b}_2 \times \vec{b}_3}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$

$$\vec{a}_2 = 2\pi \frac{\vec{b}_3 \times \vec{b}_1}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$

$$\vec{a}_3 = 2\pi \frac{\vec{b}_1 \times \vec{b}_2}{\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3)}$$

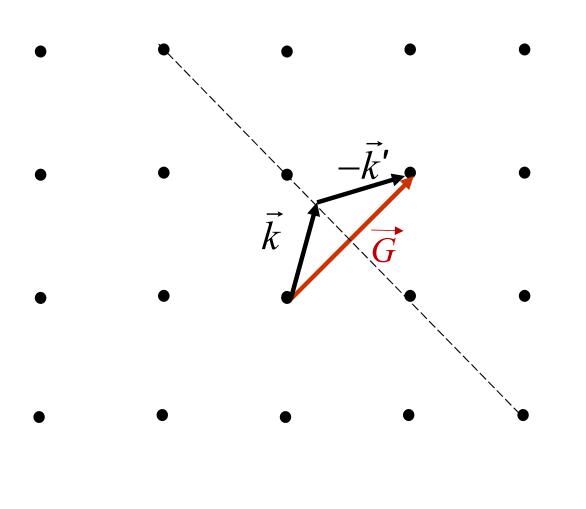
$$ec{a}_i \cdot ec{b}_j = 2\pi \delta_{ij}$$

 $\vec{b}_1, \vec{b}_2, \vec{b}_3$ determined from diffraction experiment

Volume of the primitive unit cell $\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$

G vectors specify the Bravais lattice.

Diffraction condition



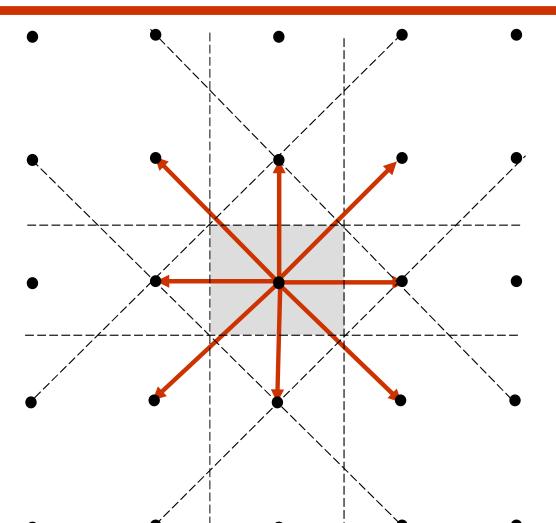
$$\vec{k}$$
'- \vec{k} = \vec{G}

For every G there is a -G so the diffraction condition can also be written as

$$\vec{k} - \vec{k}' = \vec{G}$$

A wave will be diffracted if the wave vector ends on one of the planes. The wavelength changes when you change k.

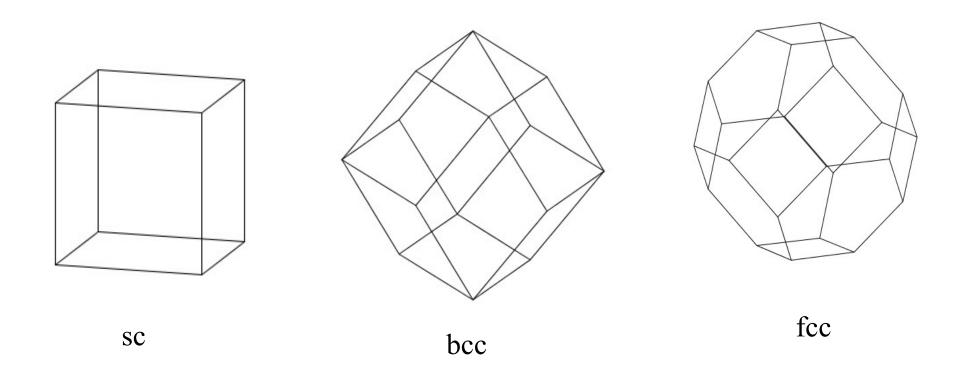
Brillouin zones



Leon Brillouin

1st Brillouin zone consists of the k-states around the origin that can be reached without crossing a plane.

1st Brillouin zones

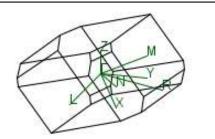


1st Brillouin is the Wigner-Seitz cell in reciprocal space.

Brillouin zones

Triclinic

 $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$



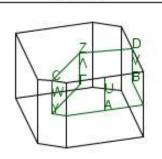
٧

Sections

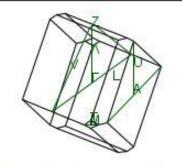
Triclinic

Monoclinic

 $a \neq b \neq c$ $\alpha \neq 90^{\circ}$ $\beta = \gamma = 90^{\circ}$



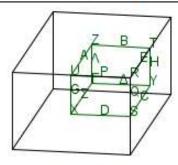
Monoclinic simple



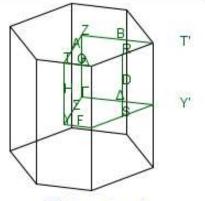
Monoclinic Base centered

Orthorhombic

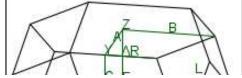
 $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

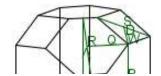


Orthorhombic simple

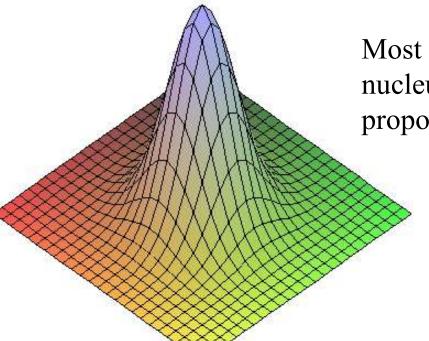


Base centered





Electron density of an atom



Most of the electrons are concentrated around the nucleus. The integral over the electron density is proportional to the number of electrons.

$$n_j(\vec{r}) \propto \exp\left(-\frac{(\vec{r} - \vec{r}_j)^2}{r_0^2}\right)$$

Approximately a Gaussian centered at r_j

X-ray Fluorescence spectrometer

Tells you the atomic composition of a sample to a few %

Electron density

Write the electron density as a Fourier series

$$n\left(\vec{r}\right) = \sum_{\vec{G}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} = \sum_{\vec{T}} \sum_{j} n_{j} \left(\vec{r} - \vec{r}_{j} + \vec{T}\right),$$
 Translation vector position of atom j of the basis

Multiply by $e^{-i\vec{G}'\cdot\vec{r}}$ and integrate over a unit cell.

$$\sum_{\vec{G}} \int_{\text{u.c.}} n_{\vec{G}} e^{i\vec{G} \cdot \vec{r}} e^{-i\vec{G}' \cdot \vec{r}} d\vec{r} = \sum_{j \text{u.c.}} n_{j} (\vec{r} - \vec{r}_{j}) e^{-i\vec{G}' \cdot \vec{r}} d\vec{r}.$$

Electron density

$$n_{\vec{G}}V=\sum_{j}\int n_{j}ig(ec{r}-ec{r}_{j}ig)e^{-iec{G}\cdotec{r}}dec{r}$$
 .

Make a substitution $\vec{r}' = \vec{r} - \vec{r}_j$.

$$n_{\vec{G}} = rac{1}{V} \sum_{j} e^{-i \vec{G} \cdot \vec{r}_{j}} \int n_{j} \left(\vec{r}' \right) e^{-i \vec{G} \cdot \vec{r}'} d\vec{r}'.$$

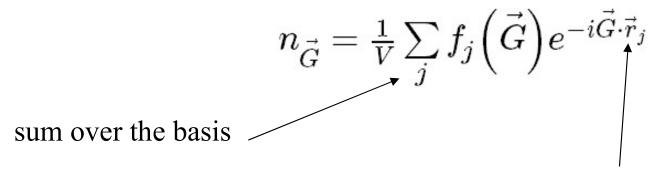
Fourier transform of the electron density of atom j = atomic form factor $f_i(|G|)$

Atomic form factor

$$f_{j}\!\left(\vec{G}
ight) = \int n_{j}\!\left(\vec{r}
ight) e^{-i\vec{G}\cdot\vec{r}} d\vec{r},$$

The atomic form factors can be looked up in a table.

The structure factors are given in terms of the atomic form factors.



position of atom j of the basis

| A | A1 | B | 🗲 | D | E | F | G |

search

Home > Volume C > Contents > Chapter 4.3 > Section 4.3.2

previous next

International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables

pdf | chapter contents | chapter index | related articles

b1

International Tables for Crystallography (2006). Vol. C, ch. 4.3, p. 262

 a_4

Section 4.3.2. Parameterizations of electron atomic scattering factors

J. M. Cowley, b‡ L. M. Peng, G. Ren, S. L. Dudarev and M. J. Whelan

$$\overrightarrow{k}' - \overrightarrow{k} = \overrightarrow{q} = \overrightarrow{G}$$

© International Union of Crystallography 2006

Table 4.3.2.2 | pdf |

Element

Edited by E. Prince eISBN 978-1-4020-5408-2

Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 Å⁻¹

$$f(q) = \sum_{i} a_i \exp(-b_i q^2)$$

Licitorio	2.0	-	-								2
Н	1	0.0349	0.1201	0.1970	0.0573	0.1195	0.5347	3.5867	12.3471	18.9525	38.6269
He	2	0.0317	0.0838	0.1526	0.1334	0.0164	0.2507	1.4751	4.4938	12.6646	31.1653
Li	3	0.0750	0.2249	0.5548	1.4954	0.9354	0.3864	2.9383	15.3829	53.5545	138.7337
Ве	4	0.0780	0.2210	0.6740	1.3867	0.6925	0.3131	2.2381	10.1517	30.9061	78.3273
В	5	0.0909	0.2551	0.7738	1.2136	0.4606	0.2995	2.1155	8.3816	24.1292	63.1314
С	6	0.0893	0.2563	0.7570	1.0487	0.3575	0.2465	1.7100	6.4094	18.6113	50.2523
И	7	0.1022	0.3219	0.7982	0.8197	0.1715	0.2451	1.7481	6.1925	17.3894	48.1431
0	8	0.0974	0.2921	0.6910	0.6990	0.2039	0.2067	1.3815	4.6943	12.7105	32.4726
F	9	0.1083	0.3175	0.6487	0.5846	0.1421	0.2057	1.3439	4.2788	11.3932	28.7881
Ne	10	0.1269	0.3535	0.5582	0.4674	0.1460	0.2200	1.3779	4.0203	9.4934	23.1278
Na	11	0.2142	0.6853	0.7692	1.6589	1.4482	0.3334	2.3446	10.0830	48.3037	138.2700
Mg	12	0.2314	0.6866	0.9677	2.1882	1.1339	0.3278	2.2720	10.9241	39.2898	101.9748
A1	13	0.2390	0.6573	1.2011	2.5586	1.2312	0.3138	2.1063	10.4163	34.4552	98.5344

513.001 Molecular and Solid State Physics

Home Outline

Introduction

Molecules

Crystal Structure

Crystal Diffraction

Crystal Binding

Photons

Phonons Electrons

Energy bands

Crystal Physics

Semiconductors

Magnetism

Exam questions

Appendices

Lectures TUG students

Student projects

Skriptum

Books

Making presentations

< hide <

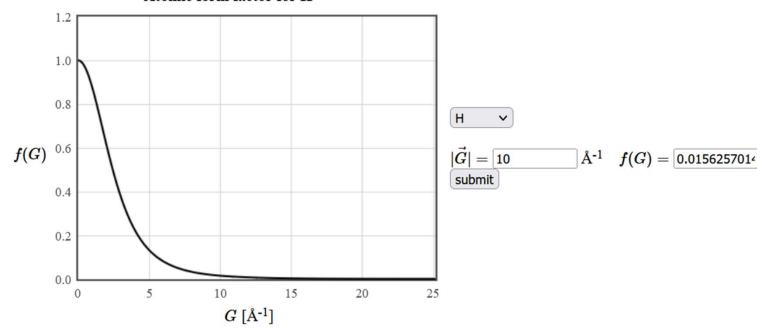
Atomic form factors

In the range of scattering vectors between $0 \le q \le 25 \text{ Å}^{-1}$, the atomic form factor is well approximated by the expression, [1]

$$f(q) = \sum_{i=1}^{4} a_i \exp\left(-b_i \left(\frac{q}{4\pi}\right)^2\right) + c,$$

where the values of a_i , b_i , and c are tabulated below. The different atomic form factors for the elements can be plotted using the form below.

Atomic form factor for H



Element	a_1	<i>b</i> ₁	a ₂	b ₂	аз	b3	a4	b4	c
H	0.489918	20.6593	0.262003	7.74039	0.196767	49.5519	0.049879	2.20159	0.001305
H1-	0.897661	53.1368	0.565616	15.187	0.415815	186.576	0.116973	3.56709	0.002389
He	0.8734	9.1037	0.6309	3.3568	0.3112	22.9276	0.178	0.9821	0.0064
D4848	TO SERVICE STREET	5-237-2020-00-00-00-00-00-00-00-00-00-00-00-0	8825 S180 S180 S180 S	2:25 ON SECTION 2	615140154011101H	915/67/55/CS243/5/29/	818 SPSSSSW	2565(959)(959)(1	20200000000000

Primitive lattice vectors:

Basis:

The positions of the atoms are given in fractional coodinates between -1 and 1.

Cs1+ 💌	0	$\vec{a}_1 + $	0	$ \vec{a}_2 +$	0	$ec{a}_3$
CI1-	0.5	\vec{a}_1 +	0.5	$\vec{a}_2 + $	0.5	\vec{a}_3
~		\vec{a}_1 +		$\vec{a}_2 + $		\vec{a}_3
~		$\vec{a}_1 + $		$ \vec{a}_2 +$		\vec{a}_3
~		\vec{a}_1 +		$ \vec{a}_2 +$		\vec{a}_3

submit

Al (fcc) NaCl (fcc) CsCl (sc) SrTiO3 (sc) GaAs (Zincblend, fcc)

GaN (Wurtzite, hex)

Primitive reciprocal lattice vectors

$$\begin{split} \vec{b}_1 &= 2\pi \, \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 1.525 \mathrm{e} + 10 \, \, \hat{k}_x \, + 0.000 \, \, \hat{k}_y \, + 0.000 \, \, \hat{k}_z \, [\mathrm{m}^{\text{-}1}] \\ \vec{b}_2 &= 2\pi \, \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \, \hat{k}_x \, + 1.525 \mathrm{e} + 10 \, \, \hat{k}_y \, + 0.000 \, \, \hat{k}_z \, [\mathrm{m}^{\text{-}1}] \\ \vec{b}_3 &= 2\pi \, \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \, \hat{k}_x \, + 0.000 \, \, \hat{k}_y \, + 1.525 \mathrm{e} + 10 \, \, \hat{k}_z \, [\mathrm{m}^{\text{-}1}] \end{split}$$

Structure factors

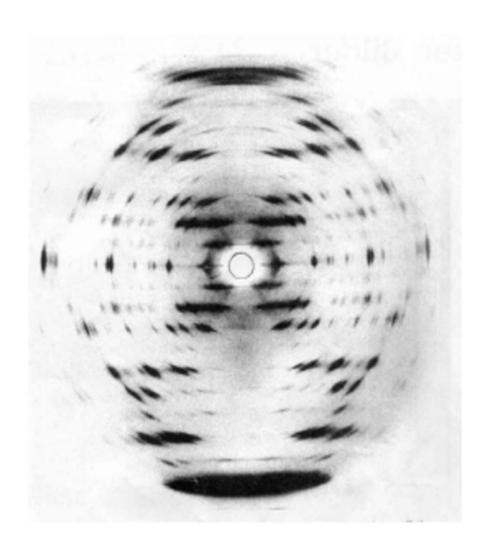
The value of $|n_{\tilde{G}}|$ for the 000 diffraction peak is the total number of electrons in the primitive unit cell. The intensities of the peaks in an x-ray diffraction experiment

hkl	$ \vec{G} \mathring{\mathbb{A}}^{-1}$	$ n_{\tilde{G}} $	$ n_{\tilde{G}} ^2$	$\operatorname{Re}\{n_{\tilde{\mathcal{G}}}\}$	$\operatorname{Im}\{n_{ec{G}}\}$
000	0.000	72.00	5184	72.00	0.000
-100	1.525	34.43	1185	34.43	5.333e-8
0-10	1.525	34.43	1185	34.43	5.333e-8
00-1	1.525	34.43	1185	34.43	5.333e-8
001	1.525	34.43	1185	34.43	-5.333e-8
	1				

crystal structure solution

structural solution of the DNA

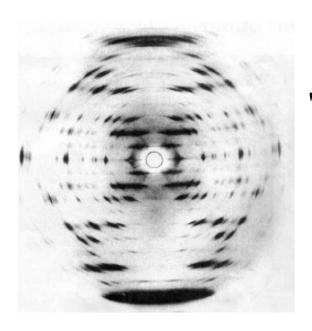
F.Crick, J.Watson, M.Wilkins nobel laureate 1962 for medicine





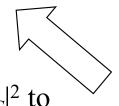
Rosalind Franklin

crystal structure solution



"Guess" the crystal structure

Element	Z	a_1	a_2	аз	a_4	a ₅	b_1	b_2	b ₃
Н	1	0.0349	0.1201	0.1970	0.0573	0.1195	0.5347	3.5867	12.347
He	2	0.0317	0.0838	0.1526	0.1334	0.0164	0.2507	1.4751	4.4938
Li	3	0.0750	0.2249	0.5548	1.4954	0.9354	0.3864	2.9383	15.382
Ве	4	0.0780	0.2210	0.6740	1.3867	0.6925	0.3131	2.2381	10.151
В	5	0.0909	0.2551	0.7738	1.2136	0.4606	0.2995	2.1155	8.3816
С	6	0.0893	0.2563	0.7570	1.0487	0.3575	0.2465	1.7100	6.4094
N	7	0.1022	0.3219	0.7982	0.8197	0.1715	0.2451	1.7481	6.1925
0	8	0.0974	0.2921	0.6910	0.6990	0.2039	0.2067	1.3815	4.6943
F	9	0.1083	0.3175	0.6487	0.5846	0.1421	0.2057	1.3439	4.2788
Ne	10	0.1269	0.3535	0.5582	0.4674	0.1460	0.2200	1.3779	4.0203
Na	11	0.2142	0.6853	0.7692	1.6589	1.4482	0.3334	2.3446	10.083
Mg	12	0.2314	0.6866	0.9677	2.1882	1.1339	0.3278	2.2720	10.924
A1	13	0.2390	0.6573	1.2011	2.5586	1.2312	0.3138	2.1063	10.416
Si	14	0.2519	0.6372	1.3795	2.5082	1.0500	0.3075	2.0174	9.6746
P	15	0.2548	0.6106	1.4541	2.3204	0.8477	0.2908	1.8740	8.5176
S	16	0.2497	0.5628	1.3899	2.1865	0.7715	0.2681	1.6711	7.0267
C1	17	0.2443	0.5397	1.3919	2.0197	0.6621	0.2468	1.5242	6.1537
Ar	18	0.2385	0.5017	1.3428	1.8899	0.6079	0.2289	1.3694	5.2561
	1				0.0040		0.0000		



Compare $|n_G|^2$ to the measurements

Table 4.3.2.2 | pdf

From the atomic form factors, calculate the structure factors n_G .

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G} \cdot \vec{r})$$

x-ray diffraction

The shape and the dimensions of the unit cell can be deduced from the positions of the Bragg reflections; the content of the unit cell, on the other hand, must be determined from the intensities of the reflections.

Solid State Physics, Ibach and Lüth

Diffraction condition:
$$\Delta \vec{k} = \vec{G}$$

The intensity of the peaks is proportional to the squared Fourier coefficients of the electron density.

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} \exp(i\vec{G} \cdot \vec{r})$$