Microelectronics and Micromechanics

1 Mikro- und Nanotechnologien in der Mikroelektronik

1.1 Grundprozesse

Ausgangspunkt ist der Siliziumwafer (früher Ge, heute auch GaAs). Ist ein Einkristall mit sehr geringer Defektdichte und hochrein (typisch einige Defekte/cm ${ }^{2}$). Herstellung meist nach dem Czochralskiverfahren (Ziehen aus der Schmelze).
Zur Zeit typische Waferdurchmesser $10 \mathrm{~cm}\left(4\right.$ ") bis 20 cm ($8^{\prime \prime}$). Länge des Einkristalls bis 2 m ; Dicke der Wafer $\approx 0.5 \mathrm{~mm}$. (Fa. Wacker Chemie/Burghausen, Bayern).
Auf dem Wafer werden in vielfacher Anzahl die IC's (integrated circuits) hergestellt (chips, dies), typische Größen: $5 \times 6 \mathrm{~mm}^{2}$ (Logikbausteine), $4 \times 10 \mathrm{~mm}^{2}$ (Speicher). Pro chip mehrere Millionen Bausteine (Transistoren, Kondensatoren). Dimensionen im $\mu \mathrm{m}$ und sub- $\mu \mathrm{m}$ Bereich.

Jack Kilby's first integrated circuit 1958

Moore's law

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.
G. Moore, 1965

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Microelectronics

Silicon chips are used in computers, mobile telephones, and microcontrollers.

1 trillion transistors are produced simultaneously on a wafer.

Gate length ~ 15 nm
1μ processor ~ 1 billion transistors ~ 100 Euros
1 transistor for 10^{-5} cents.
10^{5} transistors ~ 1 cent \rightarrow packaging is the major cost for simple circuits

100 euro/cm ${ }^{2}$

International Technology Roadmap for Semiconductors

About the ITRS
ITRS News
Public Events
Sponsors
ITRS Edition Reports and Ordering
Models
Papers and Presentations
Industry Links

ITRS Teams
ITRS Working Group Login

ITRS 2009 Edition

```
Executive Summary
System Drivers
Design
Test & Test Equipment
Process Integration, Devices & Structures
RF and A/MS Technologies for Wireless Communications
Emerging Research Devices
Emerging Research Materials
Front End Processes
Lithography
Interconnect
Factory Integration
Assembly & Packaging
Environment, Safety & Health
Yield Enhancement
Metrology
Modeling & Simulation
2009 ERRATA-Esecutive Summary, list of corrections
```

http://www.itrs.net/reports.html

International Technology Roadmap for Semiconductors

Table PIDS2a High-performance (HP) Logic Technology Requirements - TCAD

Year of Production	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
 	"16/14"		"11/10"		"8/7"		"6/5"		"4/3"		"3/2.5"		"2/1.5"		"1/0.75"	
	40	32	32	28.3	25.3	22.5	20.0	17.9	15.9	14.2	12.6	11.3	10.0	8.9	8	7.1
	20	18	16.7	15.2	13.9	12.7	11.6	10.6	9.7	8.8	8.0	7.3	6.7	6.1	5.6	5.1
	16.0	14.4	13.4	12.2	11.1	10.2	9.3	8.5	7.8	7.0	6.4	5.8	5.4	4.9	4.5	4.1
BulkiSOI\|MG	0.86	0.85	0.83	0.81	0.80	0.78	0.77	0.75	0.74	0.72	0.71	0.69	0.68	0.66	0.65	0.64
Bulk/SOlMG (nm)	0.80	0.77	0.73	0.70	0.67	0.64	0.61	0.59	0.56	0.54	0.51	0.49	0.47	0.45	0.43	0.41
Dielectric constant (K) of gate dielectrics	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0
Physical gate oxide thickness (nm)	2.56	2.57	2.53	2.51	2.49	2.46	2.42	2.42	2.37	2.35	2.29	2.26	2.23	2.19	2.15	2.10
Bulk	6.0	7.0	7.7	8.4	9.0											
SOllMG	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Bordy 7hekhess/imi/5]																
SOI																
MG	6.4	5.8	5.3	4.9	4.4	4.1	3.7	3.4	3.1	2.8	2.6	2.3	2.1	2.0	1.8	1.6
SOI																
Bulk'SOIIMG	1.10	1.07	1.03	1.00	0.97	0.94	0.91	0.89	0.86	0.84	0.81	0.79	0.77	0.75	0.73	0.71
BulkiSOIIMG	0.502	0.465	0.448	0.420	0.396	0.373	0.352	0.329	0.311	0.289	0.273	0.255	0.240	0.225	0.212	0.198
Bulk	400	400	400	400	400											
SOI																
MG	250	250	250	250	250	250	200	200	200	200	200	150	150	150	150	150
Bulk'SOIIMG	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Bulk	1,348	1,355	1,340	1,295	1,267											
SOI																
MG	1670	1,680	1,700	1,660	1,660	1,610	1,600	1,480	1,450	1,350	1,330	1,170	1,100	1,030	970	900
Bulk	0.306	0.327	0.334	0.357	0.378											
SOI																
MG	0.219	0.225	0.231	0.239	0.264	0.266	0.265	0.276	0.295	0.303	0.306	0.319	0.334	0.340	0.354	0.364

http://www.itrs.net/reports.html

Micromechanics

Figure 1.2 Micromirror made of silicon, 1 mm in diameter, is supported by torsion bars $1.2 \mu \mathrm{~m}$ wide and $4 \mu \mathrm{~m}$ thick (detail figure). Reproduced from Greywall et al. (2003), Copyright 2003, by permission of IEEE

Micromechanics

http://en.wikipedia.org/wiki/Cantilever\#mediavie wer/File:AFM_\%28used\%29_cantilever_in_Scan ning_Electron_Microscope,_magnification_1000 x.GIF

Figure 1.13 Silicon microneedle, about $100 \mu \mathrm{~m}$. Reproduced from Griss and Stemme (2003), Copyright 2003, by permission of IEEE

Micromechanics

Figure 29.20 Mechanical gears made in multiple layer polysilicon process. Courtesy Sandia National Laboratories

III
 On Newsstands Now

Issue 8.04 | Apr 2000

Why the future doesn't need us.

Pg 1 of $11 \gg$

Print, email, or fax this article for free.

Our most powerful 21st-century technologies - robotics, genetic engineering, and nanotech - are threatening to make humans an endangered species.

By Bill Joy

From the moment I became involved in the creation of new technologies, their ethical dimensions have concerned me, but it was only in the autumn of 1998 that I became anxiously aware of how great are the dangers facing us in the 21st century. I can date the onset of my unease to the day I met Ray Kurzweil, the deservedly famous inventor of the first reading machine for the blind and many other amazing things.

Ray and I were both speakers at George Gilder's Telecosm conference, and I encountered him by chance in the bar of the hotel after both our sessions were over. I was sitting with John Searle, a Berkeley philosopher who studies consciousness. While we were talking, Ray approached and a conversation began, the subject of which haunts me to this day.

http://www.if.tugraz.at/memm.html

513.160 Microelectronics and Micromechanics

Home

Outline

Books
Lectures

Microfabrication is a collection of production methods that are used to create very many electrical or mechanical components simultaneously. These methods have allowed us to produce microcontrollers and computers that affect virtually all aspects of our lives. Microcontrollers are found in household appliances such as coffee makers, vacuum cleaners, dishwashers, heating systems, and televisions. Mobile telephones and the internet have transformed how we communicate. Computers are essential for transportation systems, weather prediction, science, medicine, education, industrial design, banking, and retail sales. Even though computers are so important to modern life, there are relatively few people who understand how they are made.This course describes microelectronic and micromechanical devices and how they are fabricated. We will concentrate on silicon devices produced by optical lithography.

Technische Universität Graz

Electronic Materials

ITIS

Books

> International Technology Roadmap for Semiconductors

Principles of
Semiconductor Devices
by
Bart Van Zeghbroeck
e-book

513.160 Microelectronics and Micromechanics

Home

Outline
Books
Lectures

Outline

- Introduction
- The evolution of microelectronics
- Moore's law
- Why the future doesn't need us
- Semiconductors and semiconductor devices
- Intrinsic semiconductors
- Extrinsic semiconductors
- pn-junctions
- metal-semiconductor contacts
- MOSFETs
- CMOS
- Memories
- Semiconducting heterostructures
- Crystal and thin film growth
- Purification of silicon
- Czochralski process
- Float Zone process
- Molecular beam epitaxy
- Chemical vapor deposition
- Atomic layer deposition
- Laser ablation
- Thermal evaporation
- Sputtering

Evaluation

July 2
 Bring your phone (or a laptop).

Examination

1 Contribution to improve the course
Oral exam

Silicon

- Important semiconducting material
- 2nd most common element on earths crust (rocks, sand, glass, concrete)
- Often doped with other elements
- Oxide SiO_{2} is a good insulator

silicon crystal $=$ diamond crystal structure

Silicon

e first transistor was made of polycrystalline germaum in 1947. Electron mobility in germanium is higher an in silicon, and germanium was readily available. owever, silicon, with its larger band gap, was favoured cause of smaller leakage currents. Initially there was consensus whether single crystalline or polycrystalline aterial was better, but the rapid development of sine crystal silicon growth in the 1950's soon dominated e market. The real breakthrough came when the beneial role of silicon dioxide was recognized: it provided ssivation of semiconductor surfaces, and it resulted in aproved transistor reliability. When it was further noed that the SiO_{2} layer could act as a diffusion mask d as isolation for integrated metallization, the way was en for the invention of the integrated circuit.
multicrystalline silicon! As short forms, c-Si is used for crystalline silicon and a-Si for amorphous silicon, while polycrystalline silicon is known simply as poly. In the solar cell industry crystalline silicon is sometimes called X-Si.

4.1 Silicon Material Properties

Silicon material properties are an excellent compromise between performance and stability. An energy gap of 1.12 eV makes silicon devices less prone to thermal noise than germanium devices with a 0.67 eV gap. Silicon is transparent in the infrared (above $1.1 \mu \mathrm{~m}$ wavelength) which means that it can used as an optical material at $1.55 \mu \mathrm{~m}$ telecom wavelength applications.

Silicon

Table 4.1 Properties of silicon at 300 K

Structural and mechanical

Atomic weight
Atoms, total $\left(\mathrm{cm}^{-3}\right)$
Crystal structure
Lattice constant (\AA)
Density ($\mathrm{g} / \mathrm{cm}^{3}$)
Density of surface atoms $\left(\mathrm{cm}^{-2}\right)$

Young's modulus (GPa)
Yield strength (GPa)
Fracture strain
Poisson ratio, v
28.09
4.995×10^{22}
diamond (FCC)
5.43

Knoop hardness ($\mathrm{kg} / \mathrm{mm}^{2}$)
2.33
(100) 6.78×10^{14}
(110) 9.59×10^{14}
(111) 7.83×10^{14}

190
(111) crystal orientation

7
4%
0.27

Electrical
Energy gap (eV)
Intrinsic carrier concentration $\left(\mathrm{cm}^{-3}\right)$
Intrinsic resistivity (ohm-cm)
Dielectric constant
Intrinsic Debye length (nm)
Mobility (drift) ($\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$)
Temperature coeff. of resistivitv $\left(\mathrm{K}^{-1}\right)$
1.12
1.38×10^{10}
2.3×10^{5}
11.8

24
1500 (electrons)
475 (holes)
0.0017

Silicon

Thermal		
Coefficient of thermal expansion $\left({ }^{\circ} \mathrm{C}^{-1}\right)$		2.6×10^{-6}
Melting point $\left({ }^{\circ} \mathrm{C}\right)$	1421	
Specific heat $(\mathrm{J} / \mathrm{kg}-\mathrm{K})$		700
Thermal conductivity $(\mathrm{W} / \mathrm{m}-\mathrm{K})$		150
Thermal diffusivity	$0.8 \mathrm{~cm}^{2} / \mathrm{s}$	
Optical		
Index of refraction	3.42	$\lambda=632 \mathrm{~nm}$
	3.48	$\lambda=1550 \mathrm{~nm}$
Energy gap wavelength	$1.1 \mu \mathrm{~m}^{2}$	$($ transparent at larger wavelengths $)$
Absorption	$>10^{6} \mathrm{~cm}^{-1}$	$\lambda=200-360 \mathrm{~nm}$
	$10^{5} \mathrm{~cm}^{-1}$	$\lambda=420 \mathrm{~nm}$
	$10^{4} \mathrm{~cm}^{-1}$	$\lambda=550 \mathrm{~nm}$
	$10^{3} \mathrm{~cm}^{-1}$	$\lambda=800 \mathrm{~nm}$
	$<0.01 \mathrm{~cm}^{-1}$	$\lambda=1550 \mathrm{~nm}$

Franssila

Semionoductors

on NSM

Semiconductors

n, k database
InGaAsP
Equivalents

Si	- Silicon	Ge	- Germanium
GaP	- Gallium Phosphide	GaAs	- Gallium Arsenide
InAs	- Indium Arsenide	C	- Diamond
GaSb	- Gallium Antimonide	InSb	- Indium Antimonide
InP	- Indium Phosphide	$\mathrm{GaAs}_{1-\mathrm{x}} \mathrm{Sb}_{\mathrm{x}}$	- Gallium Arsenide Antimonide
$\mathrm{Al}_{\mathrm{X}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$	- Aluminium Gallium Arsenide		
AlN	- Aluminium Nitride	InN	- Indium Nitride
BN	- Boron Nitride	GaN	- Gallium Nitride

We are going to add new data for:

$\mathrm{Gax}_{\mathrm{x}} \mathrm{In}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{y}} \mathrm{Sb}_{1-\mathrm{y}} \quad$ - Gallium Indium Arsenide Antimonid
$\operatorname{Gax}_{\mathrm{x}} \mathrm{In}_{1-\mathrm{x}} \mathrm{A}$
InAs $1_{1-x} \mathrm{Sb}_{\mathrm{x}}$
$\mathrm{Sil}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$

- Gallium Indium Arsenide
- Indium Arsenide Antimonide
- Silicon Germanium
$\mathrm{Gax}_{\mathrm{x}} \mathrm{In}_{1-\mathrm{x}} \mathrm{P}$
$\mathrm{Gax}_{\mathrm{x}} \mathrm{In}_{1-\mathrm{x}} \mathrm{Sb}$
$\mathrm{Gax}_{\mathrm{x}} \mathrm{In}_{1-\mathrm{x}} \mathrm{A}_{\mathrm{y}} \mathrm{P}_{1-\mathrm{y}}$ SiC
- Gallium Indium Phosphide
- Gallium Indium Antimonide
- Gallium Indium Arsenide Phosphide
- Silicon Carbide

Temperature Dependences
Temperature dependence of the energy gap

$$
\mathrm{E}_{\mathrm{g}}=1.17-4.73 \cdot 10^{-4} \cdot \mathrm{~T}^{2} /(\mathrm{T}+636)(\mathrm{eV})
$$

where T is temperature in degrees K .

Energy gap	1.12 eV
Energy separation ($\mathrm{E}_{\Gamma \mathrm{L}}$)	4.2 eV
Energy spin-orbital splitting	0.044 eV
Intrinsic carrier concentration	$1 \cdot 10^{10} \mathrm{~cm}^{-3}$
Intrinsic resistivity	$3.2 \cdot 10^{5} \Omega \cdot \mathrm{~cm}$
Effective conduction band density of states	$3.2 \cdot 10^{19} \mathrm{~cm}^{-3}$
Effective valence band density of states	$1.8 \cdot 10^{19} \mathrm{~cm}^{-3}$

Temperature dependence of the direct band gap $\mathrm{E}_{\Gamma 2}$

$$
\mathrm{E}_{\Gamma 2}=4.34-3.91 \cdot 10^{-4} \cdot \mathrm{~T}^{2} /(\mathrm{T}+125)(\mathrm{eV})
$$

Intrinsic carrier concentration

$$
n_{i}=\left(N_{c}-N_{v}\right)^{1 / 2} \cdot \exp \left(-E g /\left(2 k_{B} T\right]\right)
$$

Effective density of states in the conduction band

$$
\mathrm{N}_{\mathrm{c}}=4.82 \cdot 10^{15} \cdot \mathrm{M} \cdot\left(\mathrm{~m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{o}}\right)^{3 / 2} \cdot \mathrm{~T}^{3 / 2}=4.82 \cdot 10^{15} \cdot \mathrm{M} \cdot\left(\mathrm{~m}_{\mathrm{cd}} / \mathrm{m}_{\mathrm{o}}\right)^{3 / 2} \cdot \mathrm{~T}^{3 / 2}\left(\mathrm{~cm}^{-3}\right),
$$

or

$$
\mathrm{N}_{\mathrm{c}}=6.2 \cdot 10^{15} \cdot \mathrm{~T}^{3 / 2}\left(\mathrm{~cm}^{-3}\right),
$$

$\mathrm{M}=6$ is the number of equivalent valleys in the conduction band.
$\mathrm{m}_{\mathrm{c}}=0.36 \mathrm{~m}_{\mathrm{o}}$ is the effective mass of the density of states in one valley of conduction $\mathrm{m}_{\mathrm{cd}}=1.18 \mathrm{~m}_{0}$ is the effective mass of the density of states.

Effective density of states in the valence band

$$
\mathrm{N}_{\mathrm{v}}=3.5 \cdot 10^{15} \cdot \mathrm{~T}^{3 / 2}\left(\mathrm{~cm}^{-3}\right)
$$

The temperature dependence of the intrinsi (Shur [19907).

Fermi level versus temperature for differen (Grove [19677).

diamond

c Si Ge

Number: 227
-Primitive Vectors:

$$
\begin{aligned}
& \vec{a}_{1}=\frac{a}{2} \hat{y}+\frac{a}{2} \hat{z} \\
& \vec{a}_{2}=\frac{a}{2} \hat{x}+\frac{a}{2} \hat{z} \\
& \vec{a}_{3}=\frac{a}{2} \hat{x}+\frac{a}{2} \hat{y} \quad a=0.543 \mathrm{~nm}
\end{aligned}
$$

Active

$$
\vec{B}_{1}=(0,0,0)
$$

-Basis Vectors:

$$
\vec{B}_{2}=(1 / 4,1 / 4,1 / 4)
$$

Point group: m3m $\left(\mathrm{O}_{\mathrm{h}}\right) 6$ 2-fold rotations, 4 3-fold rotations, 3 4-fold rotations, 9 mirror planes, inversion

Silicon surfaces

Miller indices: Crystal planes

() specific plane
\{ \} family of equivalent planes

MOSFETs are made on <100> wafers

A plane with the intercepts
$1 / h, 1 / k, 1 / l$ is the (h, k, l) plane.
always use integers for h, k, l

(100)

(101)

(110)

(010)

Strain

A distortion of a material is described by the strain matrix

$$
\begin{aligned}
& x^{\prime}=\left(1+\varepsilon_{x x}\right) \hat{x}+\varepsilon_{x y} \hat{y}+\varepsilon_{x z} \hat{z} \\
& y^{\prime}=\varepsilon_{y x} \hat{x}+\left(1+\varepsilon_{y y}\right) \hat{y}+\varepsilon_{y z} \hat{z} \\
& z^{\prime}=\varepsilon_{z x} \hat{x}+\varepsilon_{z y} \hat{y}+\left(1+\varepsilon_{z z}\right) \hat{z}
\end{aligned}
$$

Stress

9 forces describe the stress $X x, X y, X z, Y x, Y y, Y z, Z x, Z y, Z z$

$$
\begin{aligned}
& \text { LreSS } \\
& \text {-direction to the } \\
& \text { stress tensor: } \sigma=\left[\begin{array}{lll}
\frac{X_{x}}{A_{x}} & \frac{X_{y}}{A_{y}} & \frac{X_{z}}{A_{z}} \\
\frac{Y_{x}}{A_{x}} & \frac{Y_{y}}{A_{y}} & \frac{Y_{z}}{A_{z}} \\
\frac{Z_{x}}{A_{x}} & \frac{Z_{y}}{A_{y}} & \frac{Z_{z}}{A_{z}}
\end{array}\right]
\end{aligned}
$$

$X x$ is a force applied in the x-direction to the plane normal to x
$X y$ is a sheer force applied in the x-direction to the plane normal to y

Stress is force $/ \mathrm{m}^{2}$

Stress and Strain

$$
\varepsilon_{i j}=s_{i j k l} \sigma_{k l}
$$

The stress - strain relationship is described by a rank 4 stiffness tensor. The inverse of the stiffness tensor is the compliance tensor.

$$
\sigma_{i j}=c_{i j k l} \varepsilon_{k l}
$$

Einstein convention: sum over repeated indices.

$$
\begin{aligned}
& \varepsilon_{x x}=s_{x x x x} \sigma_{x x}+s_{x x x y} \sigma_{x y}+s_{x x x z} \sigma_{x z}+s_{x x y x} \sigma_{y x}+s_{x x y y} \sigma_{y y} \\
& +s_{x x y z} \sigma_{y z}+s_{x x z x} \sigma_{z x}+s_{x x y y} \sigma_{z y}+s_{x x z z} \sigma_{z z}
\end{aligned}
$$

Mechanical properties

The stress-strain relation for silicon is described by the tensor equation,

$$
\sigma_{i j}=c_{i j k l} \epsilon_{k l},
$$

where the elements of the compliance tensor are,

$$
\begin{aligned}
& c_{11}=165.7 \mathrm{GPa}=c_{x x x x}=c_{y y y y}=c_{z z z z}, \\
& c_{12}=63.9 \mathrm{GPa}=c_{x x y y}=c_{x y z z}=c_{z z y y}=c_{y y x x}=c_{y y z z}=c_{z z x x}, \\
& c_{44}=79.6 \mathrm{GPa}=c_{x y x y}=c_{x z x z}=c_{y z y z}=c_{y x y x}=c_{z x z x}=c_{z y z y}, \\
& \text { all other components } c_{i j k l}=0 .
\end{aligned}
$$

Yield strength: 7 GPa
Fracture strain: 4\%
Possion's ratio: 0.27
When an electric field is applied to a silicon crystal, the resulting strain can be expressed as a Taylor series,

$$
\epsilon_{i j}=d_{i j k} E_{k}+Q_{i j k l} E_{k} E_{l}+\cdots,
$$

where $\epsilon_{i j}$ is the strain, E_{k} is the electric field, $d_{i j k}$ is the reciprocal piezoelectric tensor, and $Q_{i j k l}$ is the electrostriction tensor. Silicon has inversion symmetry in its point group so the reciprocal piezoelectric tensor is zero by symmetry and the leading order term is electrostriction.

