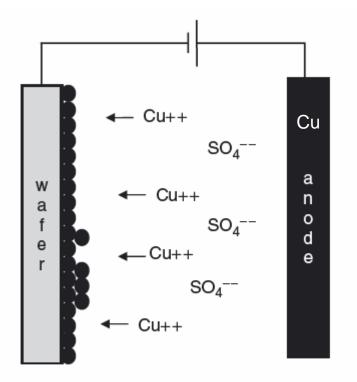

Atomic Layer Deposition(ALD)

AlO_x for diffusion barriers OLED displays

http://en.wikipedia.org/wiki/Atomic_layer_deposition#/media/File:ALD_schematics.jpg

SIGMA-ALDRICH[®] ~ Q 200,000+ Hello. Sign in. 24/7 Featured 0 Items SUPPORT ~ SERVICES ~ INDUSTRIES ~ ACCOUNT ~ ORDER 📜 🗸 PRODUCTS ~ Austria Home > Product Directory > Materials Science > Micro/NanoElectronics > Vapor Deposition in Share Share Q +1 Tweet Precursors > CVD and ALD Precursors by Metal MALDRICH CVD and ALD Precursors by Metal Materials Science Products New Products for Materials Science Biomaterials Bioelectronics Aluminum - (6) Hafnium - (11) Selenium - (2) Graphene Technologies Antimony - (2) Holmium - (1) Silicon - (28) Arsenic - (3) Iron - (5) Strontium - (2) Specialty Polymers and Nanomaterials for Drug Delivery Lanthanum - (4) Barium - (4) Tantalum - (6) Metal & Ceramic Science Bismuth - (3) Magnesium - (5) Tellurium - (2) Micro & Nanoelectronics Manganese - (6) Terbium - (4) Boron - (4) Cadmium - (1) Molybdenum - (9) Thulium - (2) Nanomaterials Calcium - (2) Neodymium - (1) Tin - (11) Organic and Printed Electronics Cerium - (1) Nickel - (5) Titanium - (10) Polymer Science Chromium - (3) Niobium - (1) Tungsten - (12) Renewable & Alternative Osmium - (1) Vanadium - (3) Cobalt - (5) Energy Copper - (2) Platinum - (2) Water - (1) Custom Services Praseodimium - (2) Ytterbium - (2) Erbium - (2) Learning Center Europium - (2) Rhenium - (1) Yttrium - (7) Labware Gadolinium - (3) Rhodium - (1) Zinc - (6) Ruthenium - (4) Zirconium - (13) Gallium - (3) Events - Seminars & Tradeshows Gases - (12) Samarium - (2) Germanium - (9) Scandium - (2) Specialty Monomers for

Ophthalmic Applications

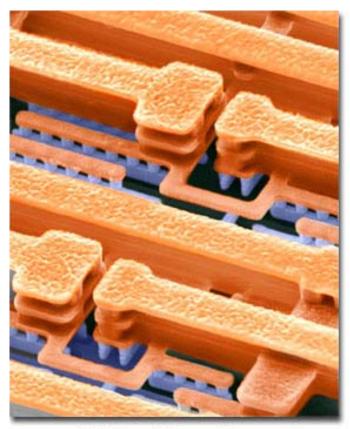


Lam's market-leading ALTUS systems combine CVD and ALD technologies to deposit the highly conformal films needed for advanced tungsten metallization applications. Nucleation layer formed using Lam's Pulsed Nucleation Layer (PNL) ALD process and in-situ bulk CVD fill.

http://www.lamresearch.com/products/deposition-products

Electrochemical Deposition (ECD)

Figure 5.10 Electroplating: $CuSO_4$ electrolyte ionizes to produce Cu^{++} and SO_4^{2+} ions, copper film deposits at the cathode


Copper

At cathode $Cu^{2+} + 2 e^- \longrightarrow Cu(s)$ electrolyte solution: $CuSO_4$ At anode $Cu \longrightarrow Cu^{2+} + 2 e^-$

A seed layer is deposited by CVD or PVD

The wafer is immersed in a liquid electrolyte at room temperature.

Copper wiring

SEM view of Copper Interconnect (IBM Microelectronics)

http://www.tf.uni-kiel.de/matwis/amat/def_en/articles/damascene_and_si/damascene_process_si.html

SKINETICS.

System Solutions for a Changing World

Electroplating (ECD) Systems & Applications

Kinetics is a leading supplier of innovative electroplating (ECD) process solutions. Kinetics specializes in the design and manufacture of both - standard and custom plating equipment. Our portfolio of process platforms range from manual to automated which are configured to meet your specific requirements. Kinetics specializes in pattern and alloy plating with hundreds of systems installed in leading R&D, Pilot Line and HVM facilities.

Markets served:

- Advanced Packaging
- MEMS

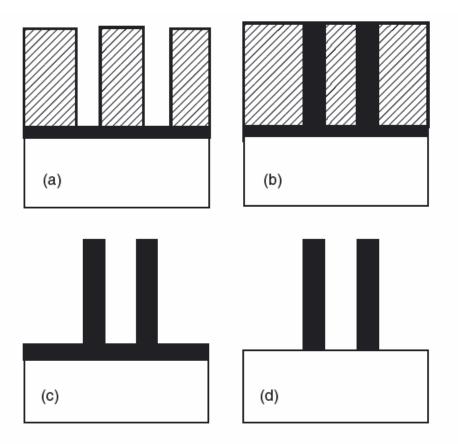
Semiconductor

- PV Solar
- Compound Semiconductor
- Medical Devices / BioFluidics
- Data Storage
- Biopharmaceutical

Portfolio of ECD application solutions include:

- Advanced Packaging: TSV, Copper Pillar, RDL, Pad, WLP, Solder, UBM
- MEMS Patten Plating : Cu, Au, Ni, Pt, Ru, SnAg
- Magnetic Deposition: NiFe, NiFeCo
- 100mm to 450mm silicon wafers. III-V substrates
- Electroless Deposition and Electro-Etch
- Custom substrates

http://www.kinetics.net/index.php/products/electro-chemical-deposition-ecd-products.html



SABRE[®] PRODUCT FAMILY

Technology: Electrochemical Deposition (ECD) Solutions: Interconnect, Advanced Memory

http://www.lamresearch.com/products/deposition-products

Lithographie, Galvanoformung, Abformung (LIGA)

Figure 5.12 Resist masked plating (LIGA, for Lithography and Galvanic plating): (a) seed layer deposition and lithography; (b) plating; (c) resist stripping; (d) seed layer removal

Figure 5.11 Nickel gear structures (50 µm high) made by electroplating. Reproduced from Guckel (1998) by permission of IEEE

Fransila

Lithographie, Galvanoformung, Abformung (LIGA)

http://timetapestry.blogspot.co.at/2012_12_01_archive.html

Etching

Wet chemical etching Ion milling Reactive ion etching Chemical-Mechanical Polishing

Wet etching

Etchant

Etch stop (DI water)

etching rate, anisotropy, selectivity

Wet Etching

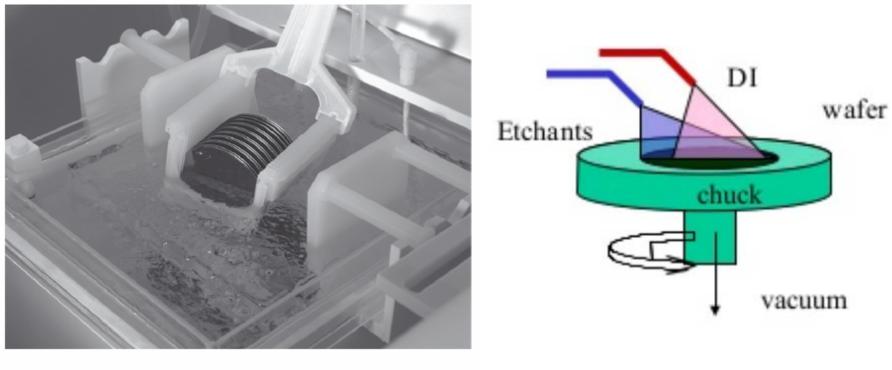


Figure 11.8 Wet etching tank. Courtesy VTT

Spray etching

Fransila

http://www.slideshare.net/gkdelhi8/slide-25-36278815

http://www.cleanroom.byu.edu/wet_etch.phtml

Wet Chemical Etching of Metals and Semiconductors

Etch rate depends on deposited m

A comprehensive list of etchants for over 50 different me specified.

Aluminum

s

Aluminum Gallium Arsenide

Aluminum Trioxide / Alumina / Sapphire

Antimony

Bismuth

Brass

Bronze

Carbon

Chromium

Cobalt

Copper

Epoxies

Gallium Arsenide

Germanium

Gold

Hafnium

Indium

Indium Gallium Arsenide

Indium Gallium Phosphide

Indium Phosphide

Indium Phoenhide Ovide Etchante

>			
Concentrations	Etchants	Rate (angstroms/sec)	Temperature/Other
1:1	H ₂ O : HF		
1:1:1	HCI: HNO3: H2O		
dilute or concentrated	HCI		
	H ₃ PO ₄ : HNO ₃ : HAc		
19:1:1:2	H_3PO_4 : HAc : HNO ₃ : H_2O	40	
3:1:3:1	H_3PO_4 : HAc : HNO ₃ : H_2O	8.7 @ >RT	@ 40 C <4 min/micror
4:4:1:1	H_3PO_4 : HAc : HNO ₃ : H_2O	5.6	
15:0:1:1-4	H_3PO_4 : HAc : HNO ₃ : H_2O	1500	40 C
8:1:1	H ₃ PO ₄ : H ₂ O ₂ : H ₂ O	100	@ 35C
3:1:5	H ₃ PO ₄ : H ₂ O : glycerin		
69 : 131	HCIO ₄ : HAc		
4:1:5	HCI : FeCle : H ₂ O		
	FeCl ₃ : H ₂ O		100 F
10%	K ₃ Fe(CN) ₆	100	
	KOH : K ₃ Fe(CN) ₈ : K ₂ B ₄ O ₇ .4H ₂ O		
2:3:12	KMnO ₄ : NaOH : H ₂ O		
1:1:3	NH ₄ OH : H ₂ O ₂ : H ₂ O		
20%	NH-SO.		

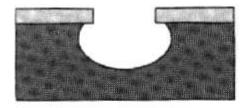
Acid safety

Acid Safety

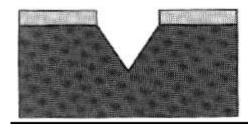
The following is the manual used to train cleanroom personnel about handling and storing acids:

Operating Instructions

Read the MSDS Know which precautions to take Dispose of acids properly

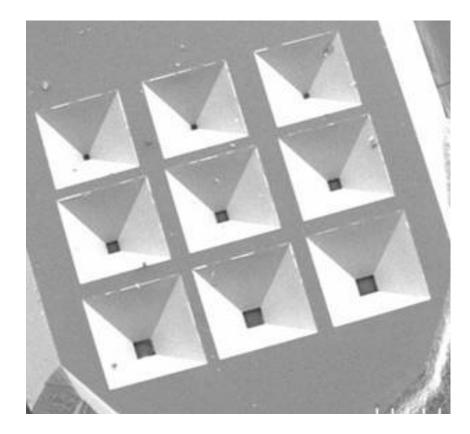

http://www.cleanroom.byu.edu/acid_safety.phtml

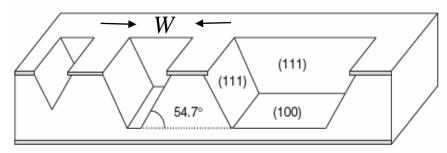
Solvent safety


Solvents used in the IML:

Chemical	Abbreviation	Fire Hazard	Toxicity Hazard	TLV ppm	Odor Threshold	Toxic Effects
Acetone	ACE	Extreme	Low	750	140 ppm (sweet/fruity)	Irritates eyes, nose and throat; headaches; skin dryness
Freon	TF	Low	Low	1000	Variable	Dries skin; light headedness
Isopropyl Alcohol	IPA	Extreme	Low	400	20 ppm (sharp/musty)	Dries skin; irritates eyes, nose and throat; drowsiness
Methyl Isoamylketone	MIAK	Moderate	Extreme	50	0.05 ppm (sweet/sharp)	Irritates eyes, nose and throat; may cause weakness, dizziness, lightheadedness, nausea, vomiting, or kidney damage
Methyl Isobutylketone	МІВК	Extreme	Extreme	50	0.3 ppm (sweet/sharp)	Irritates eyes, nose and throat; may cause weakness, dizziness, lightheadedness, nausea, vomiting, or kidney damage
Methyl Ethylketone	MEK	Extreme	Extreme	200	2-100 ppm (misty)	Irritation of eyes and nose; intoxication, headache, and dizziness
Ethyl Lactate	Positive Photo Resist	Moderate	Low	None	None (fruity/ester)	Combustible liquid; skin, eye, respiratory irritant; nervous system toxin
Propylene Glycol Monomethyl Ether Acetate	PGMEA	Moderate	Low	None	Very low (slightly sweet odor)	Irritant; may cause itching, redness and burns to skin; ingestion may cause diarrhea, kidney and liver damage

Isotropic and anisotropic etching


Isotropic



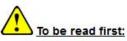
Anisotropic

http://mmadou.eng.uci.edu/Book/Q_Chap4.htm

KOH etching of silicon

Figure 20.1 Anisotropic wet-etched profiles in <100> wafer. The sloped sidewalls are the slow etching (111) planes; the horizontal planes are (100). Etching will terminate if the slow etching (111) planes meet

Self limiting depth:
$$d = \frac{W}{\sqrt{2}}$$


KOH etches Si $\{110\} > \{100\} > \{111\}$, producing a characteristic anisotropic V-etch, with sidewalls that form a 54.7° angle with the surface (35.3° from the normal).

http://www.ece.uncc.edu/research/clean_room/fabprocesses/KOH-EtchingAndDecon.pdf

KOH WETBENCH MANUAL	
	Menu
CENTER OF MICRONANOTECHNOLOGY CMI	Reservation - ok
EPFL > CMI > Etching > Plade Six Sigma	English
ECOLE POLYTECHNIQUE EEDERALE DE LAUSANNE	Directory ¥ Q

Printer friendly version (here)

Etching through a wafer can take hours

- SAFETY OPERATOR MANUAL (HERE) / PROCÉDURE DE SÉCURITÉ POUR OPÉRER SUR LES WETBENCH DU CMI A LIRE OBLIGATOIREMENT (ICI)
- RESIST IS TOTALLY FORBIDEN INTO THESE BATHES
- THE KOH ETCH RATE COULD VARY: FOR ACCURATE ETCHING PLEASE CALIBRAT IT BEFORE PROCESSING LIVE WAFERS

https://cmi.epfl.ch/etch/PladeKOH.php

KOH etching of silicon

The <111> planes are etched 200 times slower than <100> planes.

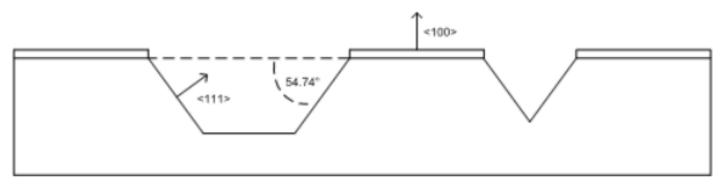


Figure 1: Typical profile obtains after Si <100> etching

T°C	:	Si Etch Rate (µm/h)	Selectivity Si/SiO2	Bath density
60	18.7 (±2)		290	1.38
			Table 1: 10% KOH bath	

Table 1: 40% KOH bath

T°C	Si Etch Rate (µm/h)	Selectivity Si/SiO2	Selectivity Si/Si3N4	bath density
60	25	458:1	more than 25000:1	1.20
70	42	349:1	more than 25000:1	1.20
80	74	277:1	more than 25000:1	1.21
90	120	204:1	more than 25000:1	1.22

Table 2: 23% KOH bath

https://cmi.epfl.ch/etch/PladeKOH.php

Other anisotropic etchants for silicon

Etchant	Operating temp (°C)	R ₁₀₀ (µm/min)	S=R ₁₀₀ /R ₁₁₁	Mask materials
Ethylenediamine pyrocatechol (EDP) ^[2]	110	0.47	17	SiO ₂ , Si ₃ N ₄ , Au, Cr, Ag, Cu
Potassium hydroxide/lsopropyl alcohol (KOH/IPA)	50	1.0	400	Si_3N_4 , SiO_2 (etches at 2.8 nm/min)
Tetramethylammonium hydroxide (TMAH) ^[3]	80	0.6	37	Si ₃ N ₄ , SiO ₂

EDP (an aqueous solution of ethylene diamine and pyrocatechol), displays a <100>/<111> selectivity of 17X, does not etch silicon dioxide as KOH does, and also displays high selectivity between lightly doped and heavily boron-doped (p-type) silicon.

Tetramethylammonium hydroxide (TMAH) presents a safer alternative than EDP, with a 37X selectivity between {100} and {111} planes in silicon.

http://en.wikipedia.org/wiki/Etching_%28microfabrication%29

HF etching of SiO₂

$$SiO_2 + 6 HF = 2H^+ SiF_6^{2-} + 2H_2O$$

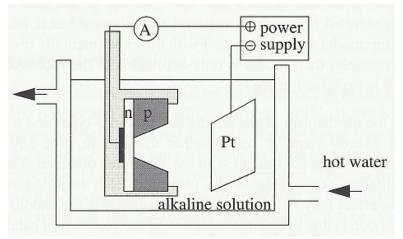
Stops at the silicon surface and leaves the surface hydrogen passivated.

HF is dangerous and you require special training before using it. Larger labs have a dedicated HF station.

HF reacts with glass, concrete, metals, water, oxidizers, reducers, alkalis, combustibles, organics and ceramics. It must be kept in special polyethylene or fluorocarbon plastic containers and special tools are used.

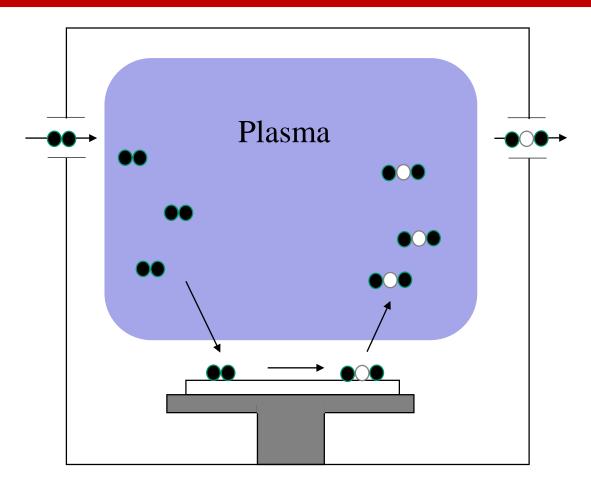
Etch-stop techniques

p+ etch stop


silicon highly doped (> 10^{19} cm⁻³) with boron etches very slowly

Etch stop with buried masking layers

implant O, N, or C to make SiO₂, SiC, or SiN_x


Electrochemically controlled pn etch stop

The voltage drops across the reverse biased junction until the n region is exposed and then the potential at the surface oxidizes the silicon

http://memslibrary.com/guest-articles/47-silicon-etching/4-etch-stop-techniques-for-etching-of-silicon-in-alkaline-solutions.html and the solution of the so

Plasma etching

The plasma activates the etching gas which reacts at the surface to form a gaseous product.

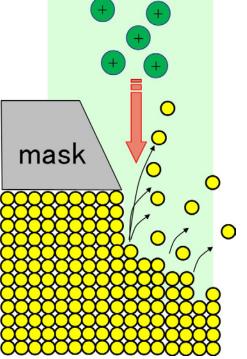
(In PECVD a solid product is formed.)

Etchants for common microfabrication materials

Material to be etched	Wet etchants	Plasma etchants
Aluminium (Al)	80% phosphoric acid (H_3PO_4) + 5% acetic acid + 5% nitric acid (HNO_3) + 10% water (H_2O) at 35–45 °C ^[4]	Cl ₂ , CCl ₄ , SiCl ₄ , BCl ₃ ^[5]
<u>Indium tin oxide</u> [ITO] (In ₂ O ₃ :SnO ₂)	Hydrochloric acid (HCl) + nitric acid (HNO ₃) + water (H ₂ O) (1:0.1:1) at 40 $^{\circ}C^{[6]}$	
Chromium (Cr)	 "Chrome etch": ceric ammonium nitrate ((NH₄)₂Ce(NO₃)₆) + nitric acid (HNO₃)^[7] Hydrochloric acid (HCl)^[7] 	
Gallium Arsenide (GaAs)	 Citric Acid diluted (C₆H₈O₇ : H₂O, 1 : 1) + Hydrogen Peroxide (H₂O₂)+ Water (H₂O) 	Cl ₂ , CCl ₄ , SiCl ₄ , BCl ₃ , CCl ₂ F ₂
Gold (Au)	Aqua regia, lodine and Potassium lodide solution	
Molybdenum (Mo)		CF4 ^[5]
Organic residues and photoresist	Piranha etch: sulfuric acid (H_2SO_4) + hydrogen peroxide (H_2O_2)	O ₂ (ashing)
Platinum (Pt)	Aqua regia	
Silicon (Si)	 Nitric acid (HNO₃) + hydrofluoric acid (HF)^[4] Potassium hydroxide (KOH) Ethylenediamine pyrocatechol (EDP) Tetramethylammonium hydroxide (TMAH) 	• CF ₄ , SF ₆ , NF ₃ ^[5] • Cl ₂ , CCl ₂ F ₂ ^[5]
Silicon dioxide (SiO ₂)	 Hydrofluoric acid (HF)^[4] Buffered oxide etch [BOE]: ammonium fluoride (NH₄F) and hydrofluoric acid (HF)^[4] 	CF ₄ , SF ₆ , NF ₃ ^[5]
Silicon nitride (Si ₃ N ₄)	 85% Phosphoric acid (H₃PO₄) at 180 °C^[4] (Requires SiO₂ etch mask) 	CF ₄ , SF ₆ , NF ₃ , ^[5] CHF ₃
Tantalum (Ta)		CF4 ^[5]
Titanium (Ti)	Hydrofluoric acid (HF) ^[4]	BCI3 ^[8]
Titanium nitride (TiN)	 Nitric acid (HNO₃) + hydrofluoric acid (HF) SC1 Buffered HF (bHF) 	

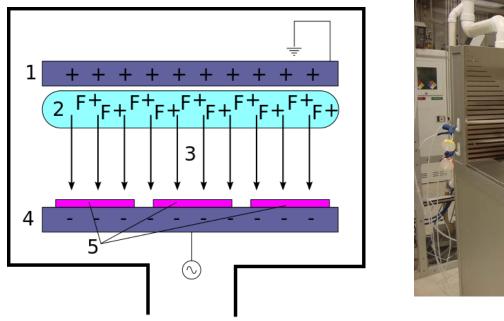
Plasma etching

The same equipment can be used for


plasma etching plasma cleaning surface modification

Leaves less residue than wet etching. The products are volatile.

Ion Milling


Ions (typically Ar) are accelerated at the substrate. No chemical reaction Selectivity ~ 1:1 High vacuum

Will etch anything

http://hitachi-hta.com/products/electron-ion-and-probe-microscopy/ion-beam-milling/im4000-ion-milling-system

Reactive Ion Etching (RIE)

Combines physical ion milling with chemical etching. Is faster and more selective than ion milling.

Isotropic and Anisotropic Plasma Etching

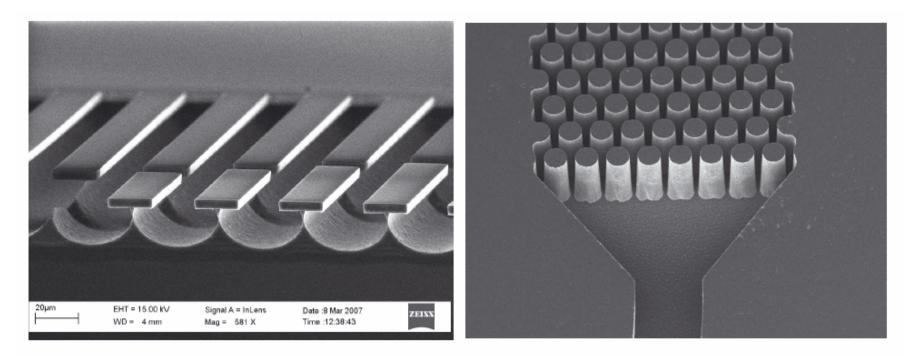
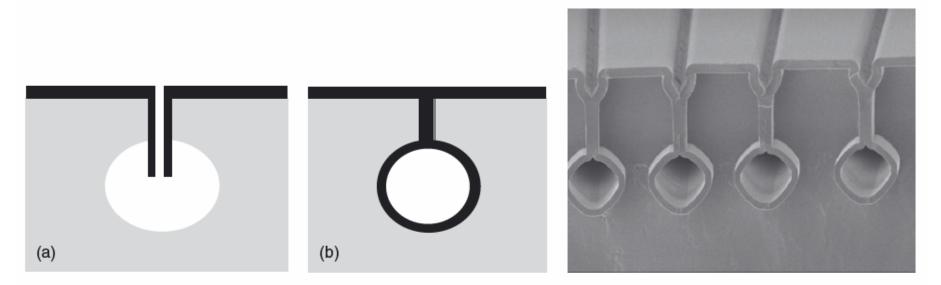



Figure 11.4 Isotropic (left) and anisotropic etch profiles (right)

Fransila

You can use plasma etching to etch isotropically and anistotropically.

Isotropic and Anisotropic Plasma Etching

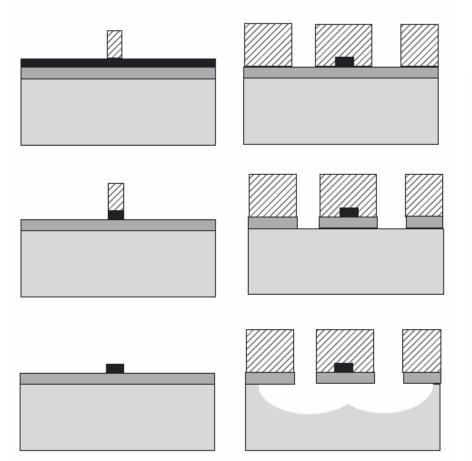
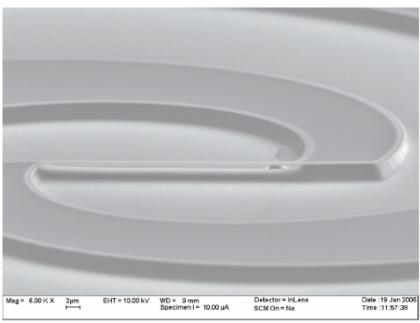


Figure 21.15 Buried microchannels: (a) anisotropic DRIE, sidewall spacer formation and isotropic DRIE; (b) removal of spacer and conformal CVD. SEM micrograph from de Boer *et al.* (2000) by permission of IEEE


Fransila

Channels used for microneedles.

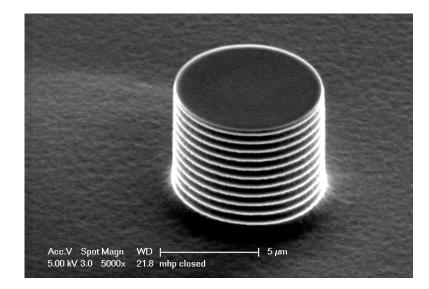
Microbolometer

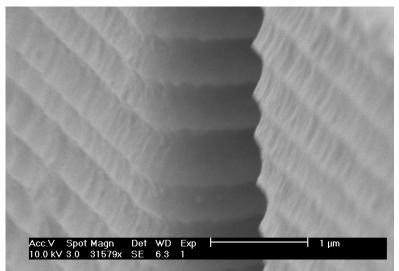
Figure 11.15 Bolometer fabrication process: left, resistor lithography and etching; right, second lithography, oxide etching and silicon isotropic etching

Figure 11.16 Spiral antenna microbolometer: silicon is isotropically etched to release the narrow resistor. SEM courtesy Leif Grönberg, VTT

Fransila

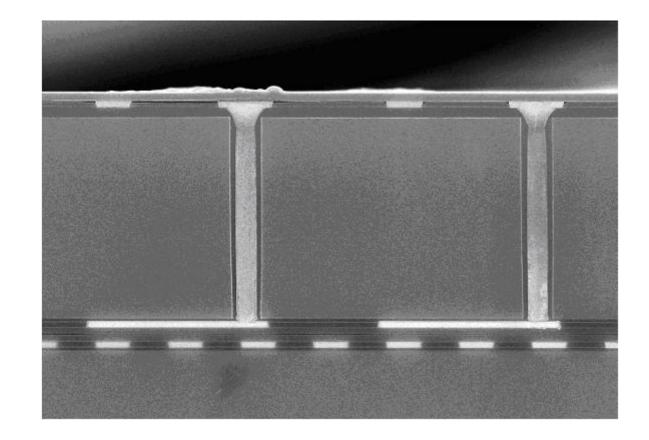
Bosch process


Repeat 2 processes over and over

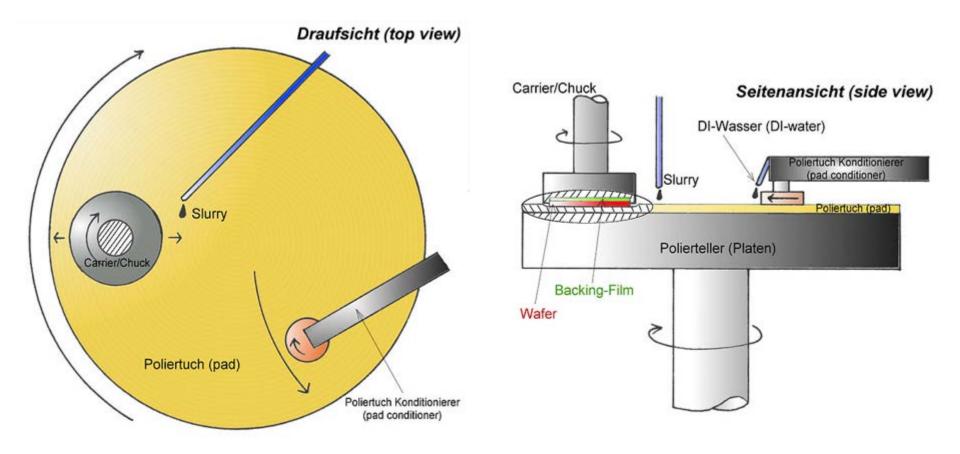

- 1. Etch Si with SF_6 (nearly isotropic)
- 2. Deposit passivation layer C_4F_8

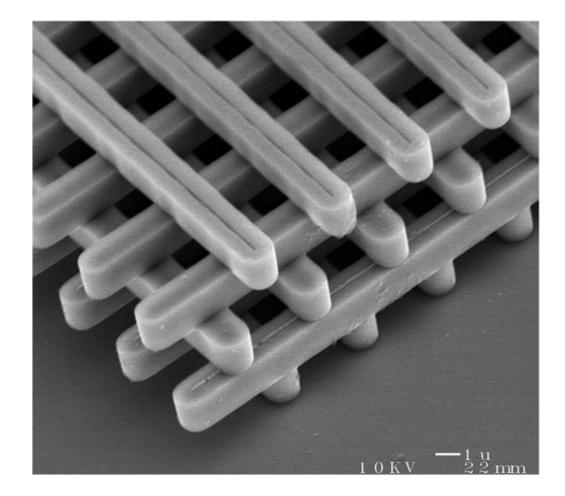
Directional etching at the bottom breaks through the passivation layer.

Short cycles: smooth walls


Long cycles: fast etching

http://en.wikipedia.org/wiki/Deep_reactive-ion_etching


Through-Silicon Via (TSV)


A vertical electrical connection (via) passing completely through a silicon wafer.

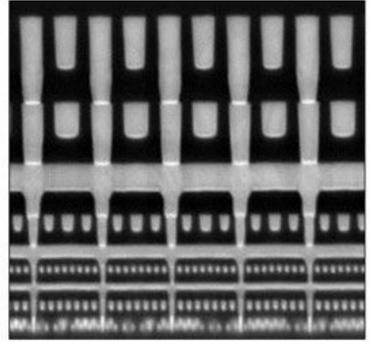
Used in 3D integration.

Chemical Mechanical Polishing (CMP)

Woodpile photonic crystal

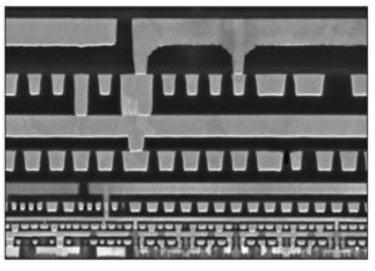
http://www.sandia.gov/media/photonic.htm

Damascene process



Inlaying of one metal in another

http://en.wikipedia.org/wiki/Damascening#/media/File:Damascening.jpg


Interconnects

22 nm Process

80 nm minimum pitch

14 nm Process



52 nm (0.65x) minimum pitch

http://www.tomshardware.com/reviews/intel-14nm-broadwell-y-core-m,3904.html

Cleaning

Wafer cleaning is a critical function that must be repeated many times during semiconductor manufacturing.

KEY APPLICATIONS

- Particle, polymer, and residue removal
- Photoresist removal
- Backside/bevel cleaning and film removal

Villach/Austria is the global centre for the development and production of all single-wafer spin technology products for back- and front- end-of-line (BEOL/FEOL) cleaning, etching and stripping applications.