Magnus effect
A spinning ball thrown through the air will follow a curved path due to the Magnus effect. The Magnus force on a smooth ball is, $\vec{F}_{\text{Magnus}} = \frac{4}{3} \pi\rho r^3(\vec{\omega}\times\vec{v}),$ where $r$ is the radius of the ball, $\rho$ is the density of the air, $\vec{\omega}$ is the angular frequency of the rotation, and $\vec{v}$ is the velocity of the ball. The drag force in air is approximated as, $\vec{F}_{\text{drag}} = -\frac{\pi}{2} r^2 \rho C_d|\vec{v}|\vec{v},$ where $C_d$ is the drag coefficient. $\vec{F}= m\frac{d^2\vec{r}}{dt^2} = -\frac{\pi}{2} r^2 \rho C_d|\vec{v}|\vec{v}+ \frac{4}{3} \pi\rho r^3(\vec{\omega}\times\vec{v})-mg\,\hat{z}$
|