Ray tracing with the transfer matrix method

Your browser does not support the canvas element.



Optical elements

 Element 1 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 $R=$

 [m] 
 Element 2 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 $R=$

 [m] 
 Element 3 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 4 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 5 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 6 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 7 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 8 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 9 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 
 Element 10 

 $d=$  [m] 

 $f=$  [m] 

 $n=$

 $n=$

 

 $R=$

  [m] 

Rays

 Ray 1   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 2   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 3   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 4   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 5   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 6   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 7   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 8   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 9   $y_0=$  [m]   $\theta_0=$  [rad]    
 Ray 10   $y_0=$  [m]   $\theta_0=$  [rad]    

Propagation a distance $d$: Propagation in a medium with a constant index of refraction. The distance is measured along the optical axis.

Thin lens: A thin lens with a focal length $f$. A lens is thin if the focal length is much greater than the thickness of the lens. The focal length is positive for a converging lens and negative for a diverging lens.

Refraction at a flat interface: The index of refraction is $n$ to the right of the interface.

Refraction at a curved interface: The index of refraction is $n$ to the right of the interface. The center of curvature is to the right of the interface for $R > 0$ and to the left of the interface for $R < 0$.