Terminal Velocity - Falling with a Linear Drag Force

The total force on a particle that falls vertically under the influence of gravity and experiences a linear drag force is

$$F_z=-mg-bv_z,$$

where $m$ is the mass, $g=9.81$ m/s², and $b$ is the drag coefficient.

$z$

$t$

$$z=z_0-\frac{mg}{b}t+\frac{m}{b}\left(v_{z0}+\frac{mg}{b}\right)\left( 1-\exp\left(-\frac{b}{m}t\right)\right)$$ $$v_z=-\frac{mg}{b}+\left(v_{z0}+\frac{mg}{b}\right)\exp\left(-\frac{b}{m}t\right)$$ $$a_z=-\frac{b}{m}\left(v_{z0}+\frac{mg}{b}\right)\exp\left(-\frac{b}{m}t\right)$$ $$F_z=-b\left(v_{z0}+\frac{mg}{b}\right)\exp\left(-\frac{b}{m}t\right)$$

Terminal velocity $v_T=\frac{mg}{b} =$ m/s.

$\frac{m}{b}=$ 1 [s]

$v_{z0}=$ 4 [m/s]

More details: