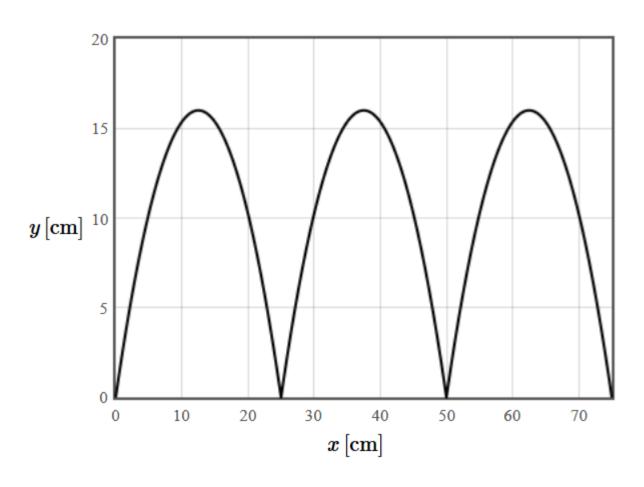


Punktmechnik

Pruefung 29.06.2017



$$ec{r} = t \hat{x} + rac{64}{625} ig(25t - t^2 ig) \, \hat{y} + 0 \hat{z} \quad ext{[cm]}$$

Punktmechanik

$$\vec{v} = \frac{d\vec{r}}{dt} \qquad \Rightarrow \vec{a} = \frac{d\vec{v}}{dt} \qquad \Rightarrow \vec{F} = m\vec{a}$$

$$\vec{r} \qquad \vec{v} \qquad \vec{a} \qquad \vec{F}$$

$$\vec{r} \qquad \Rightarrow \vec{r} \qquad \Rightarrow$$

Fähigkeiten

Mechanik punktartiger Teilchen

Bei gegebener Position \vec{r} [m], Geschwindigkeit \vec{v} [m/s], Beschleunigung \vec{a} [m/s²], oder Kraft \vec{F} [N] als Funktion der Zeit eines Teilchens, müssen Sie in der Lage dazu sein, jede der vier Grössen durch Integrieren oder Ableiten der anderen Grössen zu erhalten.

App: Numerische Integration und Differentiation von Funktionen in Abhängigkeit von t.

konstante Kraft $\vec{F}_0 = -mg\hat{z}$ $\vec{v}_0 = v_{z0}\hat{z}$ $\vec{r}_0 = 0$

$$\vec{F}_0 = -mg\hat{z}$$

$$\vec{v}_0 = v_{z0}\hat{z}$$

$$\vec{r}_0 = 0$$

$$\vec{F} = -mg\hat{z} \qquad \overrightarrow{\vec{a}} = -g\hat{z} \qquad \overrightarrow{\vec{v}} = \int \vec{a}dt + \vec{v}_0$$

$$\vec{v} = \left(-gt + \vec{v}_{z0}\right)\hat{z}$$

$$\vec{r} = \int \vec{v}dt + \vec{r}_0$$

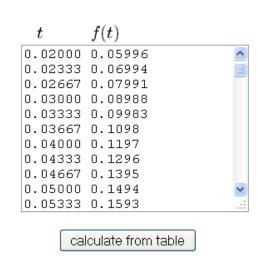
$$\vec{r} = \left(\frac{1}{2}gt^2 + \vec{v}_{z0}t\right)\hat{z}$$

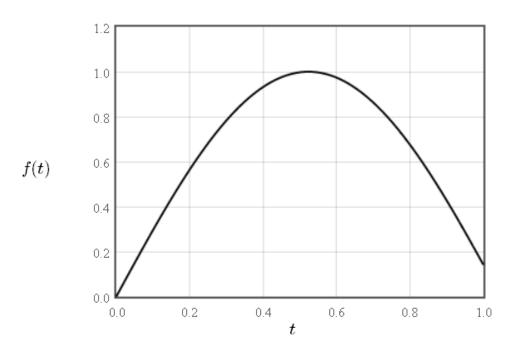
511.015 Physik M

en

Lehrplan Bücher Testfragen

Numerische Integration and Differentiation





Die 1. Ableitung

Die Ableitung von f(t) wird berechnet aus

$$rac{df}{dt} pprox rac{f(t+\Delta t)-f(t)}{\Delta t}$$
 .

Fähigkeiten

Integrieren und Differenzieren

Sie müssen wissen:

- wie man die Funktionen $\exp(x)$, $\sin(x)$, $\cos(x)$, und Polynome x^n , $1/x^n$ integriert und ableitet;
- die Produktregel für Ableitungen;
- die Quotientenregel für Ableitungen;
- die Kettenregel f
 ür Ableitungen.

Sie können Ihre Arbeit mit der App für numerische Integration und Differentiation überprüfen.

Mathematica, Wolfram Alpha

Position → Kraft (numerisch)

Ein auf einer geraden Straße fahrendes Auto hat ein GPS-Gerät installiert, welches die Position des Autos speichert. Die Masse des Autos ist 1175 kg. Welche Kraft wirkt auf das Auto zur Zeit t = 20 s?

Differenzieren Sie mittels der APP Numerische Integration.

t [s]	x [m]	
0.00	7.0000000	^
0.500	14.191468	
1.00	21.556045	
1.50	29.073493	
2.00	36.721801	
2.50	44.477305	
3.00	52.314830	
3.50	60.207848	
4.00	68.128647	
4.50	76.048522	~
5.00	83.937969	.::

solution

Arbeiten mit Daten

Manchmal erhält man Daten in Form von Textspalten. Sie sollten in der Lage sein:

- Erwartungswert und Standardabweichung jeder Spalte zu berechnen;
- alle Werte einer Spalte mit einem Wert zu multiplizieren (z.B. könnte eine Spalte die Beschleunigung eines Teilchens zu verschiedenen Zeiten repräsentieren. Multipliziert mit der Masse liefert das die jeweilige Kraft);
- die Daten einer Spalte zu plotten;
- die Daten einer Spalte numerisch zu integrieren;
- die Daten einer Spalte numerisch zu differenzieren;
- die Daten von einem Format, welches '.' als Dezimaltrennzeichen nutzt in ein Format, welches ',' als Dezimaltrennzeichen nutzt umzuwandeln.

Apps: Erwartungswert und Standardabweichung, Numerische Integration und Differentiation von Funktionen in Abhängigkeit von t, Numerische Integration und Differentiation von Funktionen in Abhängigkeit von x, Dezimal Punkt \leftrightarrow Beistrich.

Differentialgleichungen

$$ma_x = m\frac{d^2x}{dt^2} = F_x(x, v_x, t)$$

$$\frac{dx}{dt} = v_x \qquad \frac{dv_x}{dt} = \frac{F_x(x, v_x, t)}{m}$$

Numerisches Lösen von Differentialgleichungen

$$x(t=0) = x_0$$

Anfangsbedingungen:
$$x(t=0) = x_0$$
 $v_x(t=0) = v_{x0}$

$$\frac{dx}{dt} = v_x \qquad \frac{dv_x}{dt} = \frac{F_x(x, v_x, t)}{m}$$

$$x(\Delta t) \approx x_0 + \frac{dx}{dt} \Delta t$$
 $v_x(\Delta t) \approx v_{x0} + \frac{dv_x}{dt} \Delta t$

Ball werfen ohne Reibung

Numerisches Lösen von Differentialgleichungen 2. Ordnung

$$rac{dx}{dt} = v_x$$
 $a_x = rac{F_x}{m} = rac{dv_x}{dt} = -9.81$

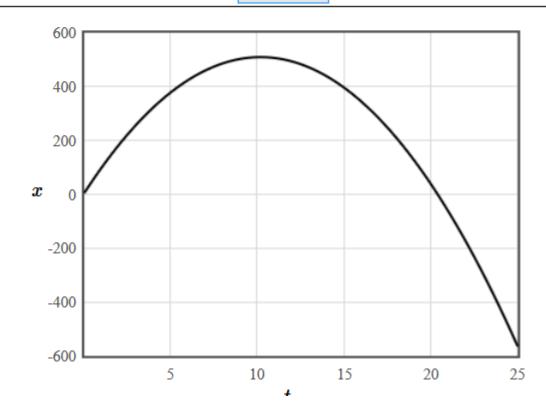
Anfangsbedingungen:

$$egin{aligned} x(t_0) &= egin{bmatrix} 0 \ v_x(t_0) &= egin{bmatrix} 100 \ t_0 &= egin{bmatrix} 0 \ \end{bmatrix} \end{aligned}$$

$$\Delta t = 0.05$$
 N_{steps} $\boxed{500}$

Graphische Darstellung: x vs. t v

$$F = m\frac{d^2x}{dt^2} = -mg$$
$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = -g$$



Ball werfen mit Reibung

Numerisches Lösen von Differentialgleichungen 2. Ordnung

$$\frac{dx}{dt} = vx$$

$$\frac{dv_x}{dt} = -9.81-0.01*vx-0.03*vx*abs(vx)$$

Anfangsbedingungen:

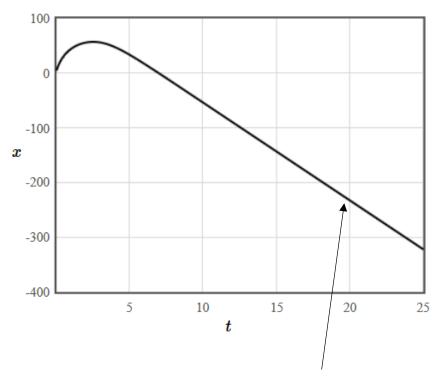
$$egin{aligned} x(t_0) &= 0 \ v_x(t_0) &= 100 \ t_0 &= 0 \end{aligned}$$

$$\Delta t = 0.05$$
 N_{steps} 500

Graphische Darstellung: x ∨ vs. t ∨

$$F = m\frac{d^2x}{dt^2} = -mg - av_x - bv_x |v_x|$$

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = -g - \frac{a}{m}v_x - \frac{b}{m}v_x |v_x|$$



Endgeschwindigkeit

Massa - Feder

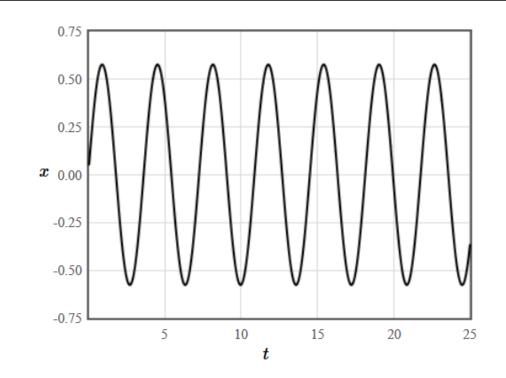
Numerisches Lösen von Differentialgleichungen 2. Ordnung

$$\frac{dx}{dt} = vx$$
 $\frac{dv_x}{dt} = -3*x$

Anfangsbedingungen:

$$egin{aligned} x(t_0) &= 0 & \Delta t = 0.05 \ v_x(t_0) &= 1 & N_{steps} \ 500 \ t_0 &= 0 & ext{Graphische Darstellung: } ext{x} imes ext{vs. } ext{t} imes \ \end{aligned}$$

$$F = m\frac{d^2x}{dt^2} = -kx$$
$$\frac{d^2x}{dt^2} = \frac{dv_x}{dt} = -\frac{k}{m}x$$



Massa - Feder mit Reibung

Numerisches Lösen von Differentialgleichungen 2. Ordnung

$$\frac{dx}{dt} = vx$$

$$\frac{dv_x}{dt} = -3*x-0.1*vx$$

Anfangsbedingungen:

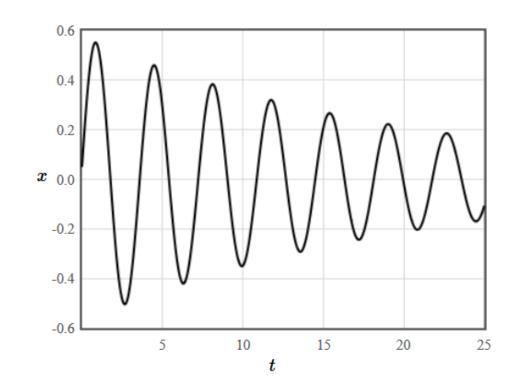
$$egin{aligned} x(t_0) &= 0 \ v_x(t_0) &= 1 \ t_0 &= 0 \end{aligned}$$

$$\Delta t = 0.05$$
 N_{steps} 500

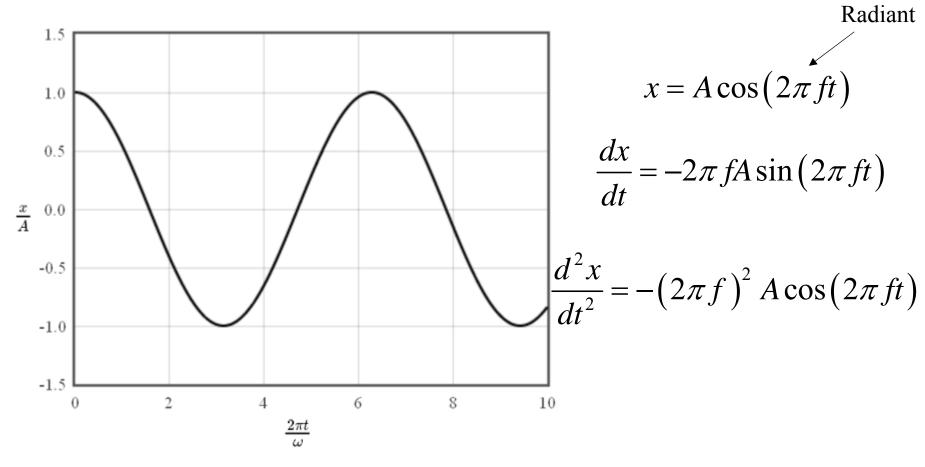
Graphische Darstellung: $x \rightarrow vs. t \rightarrow$

$$F = m\frac{d^2x}{dt^2} = -kx - av_x$$

$$\frac{d^2x}{dt^2} = \frac{dv_x}{dt} = -\frac{k}{m}x - \frac{a}{m}v_x$$



Harmonische Bewegung



$$F_x = ma = -m(2\pi f)^2 A\cos(2\pi ft) = -m(2\pi f)^2 x$$

$$F_{x} \propto f^{2}$$

Lineare Federkraft: