Vector functions in scripts

Vectors can be defined in scripts by putting the components in square brackets: A = [1,2,3];. The following vector functions have been defined.

  • length(A) - length of vector $|\vec{A}|=\sqrt{A_x^2 + A_y^2 + A_z^2}$
  • dot(A,B) - scalar product of two vectors $\vec{A}\cdot\vec{B} = A_xB_x + A_yB_y + A_zB_z$
  • dot(a,B) - scalar times a vector $ a\vec{B} = aB_x\,\hat{x} + aB_y\,\hat{y} + aB_z\,\hat{z}$
  • cross(A,B) - cross product $\vec{A}\times\vec{B}$
  • unit(A) - unit vector $\vec{A}/|\vec{A}|$
  • vadd(A,B) - vector addition $\vec{A}+\vec{B}=(A_x + B_x)\,\hat{x} + (A_y + B_y)\,\hat{y} + (A_z + B_z)\,\hat{z}$
  • vsub(A,B) - vector subtraction $\vec{A}-\vec{B}=(A_x - B_x)\,\hat{x} + (A_y - B_y)\,\hat{y} + (A_z - B_z)\,\hat{z}$

The function dot(A,B) is overloaded. If the arguments A and B are vectors, it returns the scalar vector product of these vectors but if the arguments are a vector and a scalar, it returns the vector muliplied by the scalar. The vector functions report intermediate results to the Script Output. You can load example scripts with the buttons at the bottom.




Script Output

Python: