

METAL-SEMICONDUCTOR CONTACTS IN A NUTSHELL

[PHT.301UF] Physics of Semiconductor Devices (17W)

Student presentation by Ko Odreitz

Supervisor: Peter Hadley http://www.if.tugraz.at/web.php?1

Physics of Semiconductor Devices

IF

BASICS: WORK FUNCTION OF A METAL

II F

2

Metal: free electrons among a lattice of positively charged ions **WORK FUNCTION** ϕ_m [V] Minimum energy to remove an electron from the solid surface.

Element		$e \phi_m$ [1]
Al	aluminum	4.06 - 4.26
Ag	silver	4.26 - 4.74
W	tungsten	4.32 – 5.22
Cu	copper	4.53 – 5.10
Αu	gold	5.10 - 5.47
Pt	platinum	5.12 – 5.93

Physics of Semiconductor Devices [1] Editor-in-Chief John R. Rumble. CRC Handbook of Chemistry and Physics.

3

BASICS: WORK FUNCTION VS ELECTRON AFFINITY

ELECTRON AFFINITY χ_s [V] $\chi_s = E_{vac} - E_c$

VACUUM LEVEL E_{vac} [V] Energy level where the electrons are freed from the surfaces' forces.

Element		$e\chi_s$ ^[2]
AlAs	aluminum arsenide	3.5
GaAs	gallium arsenide	4.07
Si	silicon	4.01
Ge	germanium	4.13

N-TYPE OHMIC CONTACT

 $\phi_s > \phi_m : E_c \text{ and } E_v \text{ bend up}$

With a correct combination of materials we could obtain a nearohmic behavior.

<u>E.g.</u>: n-type + **Ca** or **Ba** (low ϕ_m) p-type + **Pt** or **Au** (high ϕ_m)

Low resistance contacts are difficult to form in **Si**, **Ge**, **GaAs** due to interface states (Fermi level pinning).

Ohmic contacts form more easily when the semiconductor is highly doped nearby the junction.

A high doping narrows the depletion region and increases the probability for tunneling significantly.

This behavior is commonly used for creating metal contacts to the outside.

Physics of Semiconductor Devices

[2] Jasprit Singh. Semiconductor Devices. Basic Principles.

Physics of Semiconductor Devices

[2] Jasprit Singh. Semiconductor Devices. Basic Principles.

11 11

SCHOTTKY DIODE FACTS

INTERFACE STATES

Usually, metal and semiconductor consist out of different crystal structures. Therefore, there are many broken bonds at the interface. Those act like dopants and cause a Fermi level pinning phenomenon.

Schottky diode (Si) U pn-junction diode (Si)

SWITCHING SPEED

Schottky diodes are majority carrier devices and are faster than pn-junction diodes because no slow random recombination takes place.

VOLT-AMPERE CHARACTERISTICS

The value of the forward voltage is minimal in Schottky diodes. However, it possesses a higher leakage current. In addition, the reverse breakdown voltage is also small.

CAPACITANCE-VOLT MEASUREMENTS [3]

Due to the abrupt junction, the depletion width only increases in the semiconductor. Therefore, the doping concentration can be calculated easily: ($N_x = N_A$ if p-type; $N_x = N_D$ if n-type)

$$W = \frac{\varepsilon}{C_j} = \sqrt{\frac{2 \cdot \varepsilon \cdot (U_{bi} - U)}{e \cdot N_x}}$$