

Technische Universität Graz

MOSFETs

MOS capacitor

Field lines are vertical, current flow is horizontal.

Ohm's law
$$\longrightarrow j = -nev_d = ne\mu_n E_y$$

 $I = Ztj = Ze\mu_n n_s E_y$
 $n = \frac{n_s}{t}$

 $n_s = nt$ is the sheet charge at the interface.

$$n_s(y) = \frac{Q}{e} = \frac{-C_{ox}\left(V_G - V(y) - V_T\right)}{e}$$

$$I_D = Ztj = Ztne\mu_n E_y$$

$$E_y = -rac{dV_{ch}}{dy}$$

$$I_D = -Z\mu_n C_{ox}(V_G-V_{ch}(y)-V_T)rac{dV_{ch}}{dy}$$

This is a first order differential equation for V_{ch} : Integrate

http://lampx.tugraz.at/~hadley/psd/L10/gradualchannelapprox.php

$$V_{ch}(y) = V_G - V_T - \sqrt{(V_G - V_T)^2 - rac{2 I_D y}{Z \mu_n C_{ox}}}$$

$$E_y=-rac{dV_{ch}}{dy}=-rac{I_D}{Z\mu_n C_{ox}\sqrt{(V_G-V_T)^2-rac{2I_Dy}{Z\mu_n C_{ox}}}}$$

MOSFET Gradual Channel Approximation

 $http://lampx.tugraz.at/{\sim}hadley/psd/L10/gradualchannelapprox.php$

$$\int_{0}^{L} I_{D} \,\mathrm{d}y = \int_{0}^{V_{D}} Z \mu_{n} C_{ox} (V_{G} - V_{ch}(y) - V_{T}) \,\mathrm{d}V$$

$$I_D = rac{Z}{L} \mu_n C_{ox} igg[(V_G - V_T) V_D - rac{V_D^2}{2} igg]$$

Valid in the linear regime (until pinch-off occurs at the drain).

MOSFET-saturation voltage

$$\frac{dI}{dV_D} = \frac{Z}{L} \mu_n C_{ox} \left[\left(V_G - V_T \right) - V_D \right] = 0 \qquad V_{sat} = \left(V_G - V_T \right)$$

A MOSFET in saturation is a voltage controlled current source.

MOSFET - saturation current

0.012 Use the saturation voltage at 0.01 pinch-off to determine the saturation current 0.008 ≷ ୫ 0.006 $V_{sat} = (V_G - V_T)$ 0.004 $I = \frac{Z}{L} \mu_n C_{ox} \left[\left(V_G - V_T \right) V_D - \frac{V_D^2}{2} \right]$ 0.002 2 3 4 0 1 5 Vds [V]

 $I_{sat} = \frac{Z}{2L} \mu_n C_{ox} \left(V_G - V_T \right)^2$

MOSFET (linear regime)

MOSFET (saturation regime)

$$g_m = \frac{dI_D}{dV_G} = \frac{Z}{L} \mu_n C_{ox} \left(V_G - V_T \right)$$

A MOSFET in the saturation regime acts like a voltage controlled current source.

MOSFET (saturation regime)

Saturation

Potential

C D

Electric field strength

Alexander Schiffmann, Master Thesis (2016)

Constant E-field Scaling

Gate length L, transistor width Z, oxide thickness t_{ox} are scaled down.

 V_{ds} , V_{gs} , and V_T are reduced to keep the electric field constant.

Power density remains constant.

 $L \sim 45 t_{ox}$

1975 - 1990: "Days of happy scaling"

Constant E-field scaling

$$I_{sat} = \frac{Z}{2L} \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}} \left(V_G - V_T \right)^2$$

 $L \Rightarrow sL, \qquad Z \Rightarrow sZ, \qquad t_{ox} \Rightarrow st_{ox}, \qquad V_{th} \Rightarrow sV_{th}$

$$I_{sat} \Rightarrow sI_{sat} \quad \longleftarrow I_{sat}$$
 gets smaller

$$g_m = \frac{dI_D}{dV_G} = \frac{Z}{L} \mu_n \frac{\mathcal{E}_{ox}}{t_{ox}} \left(V_G - V_T \right) \quad \longleftarrow \text{ Transconductance stays the same.}$$

Power per transistor decreases like L^2 . Power per unit area remains constant.

The heat dissipation problem

Microprocessors are hot ~ 100 C Hotter operation will cause dopants to diffuse

When more transistors are put on a chip they must dissipate less power.

Power per transistor decreases like L^2 .

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Dual stress liners

Tensile silicon nitride film over the NMOS and a compressive silicon nitride film over the PMOS improves the mobility.

Gate dielectric

Thinner than 1 nm: electrons tunnel

Large dielectric constant desirable $\epsilon_r(SiO_2) \sim 4$

 $\epsilon_r(Si_3N_4)\sim 7$

Direct contact technology of high-k to Si

www.iwailab.ep.titech.ac.jp

High-k dielectrics

http://nano.boisestate.edu/research-areas/gate-oxide-studies/

Table PIDS2a High-performance (HP) Logic Technology Requirements - TCAD																	
Year of Production		2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Logic Industry "Node Range" Labeling (nm) [based on 0. Threduction per "Node Range" ("Node" = 2x Nx)		"16/14"		"11/10"		"8/7"		"6/5"		"4/3"		"3/2.5"		"2/1.5"		"1/0.75"	13
NFUASIC Netal 1/N11/4 Pitch (nm) (contacted)		40	32	32	28.3	25.3	22.5	20.0	17.9	15.9	14.2	12.6	11.3	10.0	8.9	8	7.1
L. : Physical Gate Length for HPL ogic (nm)		20	18	16.7	15.2	13.9	12.7	11.6	10.6	9.7	8.8	8.0	7.3	6.7	6.1	5.6	5.1
L: Effective Channel Length (nm) [3]		16.0	14.4	13.4	12.2	11.1	10.2	9.3	8.5	7.8	7.0	6.4	5.8	5.4	4.9	4.5	4.1
V ,, : Power Supply Voltage (V)																	
BUNSONG		0.86	0.85	0.83	0.81	0.80	0.78	0.77	0.75	0.74	0.72	0.71	0.69	0.68	0.66	0.65	0.64
EOT: Equivalent Oxide Thickness																	
Bulk/SOI/MG (nm)		0.80	0.77	0.73	0.70	0.67	0.64	0.61	0.59	0.56	0.54	0.51	0.49	0.47	0.45	0.43	0.41
Dielectric constant (K) of gate dielectrics		12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0
Physical gate oxide thickness (nm)		2.56	2.57	2.53	2.51	2.49	2.46	2.42	2.42	2.37	2.35	2.29	2.26	2.23	2.19	2.15	2.10
ChannelDoping(10 ^{1k} lom ³)[4]																	
Bulk		6.0	7.0	7.7	8.4	9.0						-					
SOI/MG		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Body Thickness (nm) [5]				-		-				-						14	
SOI					e												
MG		6.4	5.8	5.3	4.9	4.4	4.1	3.7	3.4	3.1	2.8	2.6	2.3	2.1	2.0	1.8	1.6
T _{BOX} : Buried Oxide Thickness for SOI (nm) [6]									· ·								
SOI																	
CET: Capacitance Equivalent Thickness (nm)[7]									· · · · · · · · · · · · · · · · · · ·					3.40			
Bulk/SOI/MG		1.10	1.07	1.03	1.00	0.97	0.94	0.91	0.89	0.86	0.84	0.81	0.79	0.77	0.75	0.73	0.71
C ch. intrinsic (IFi/um)[8]															-		
Bulk/SOI/MG		0.502	0.465	0.448	0.420	0.396	0.373	0.352	0.329	0.311	0.289	0.273	0.255	0.240	0.225	0.212	0.198
Nobility (cm ² /V-s)			•		11.1.1.1.	1000		8.00.00		2110100		1948 (N. 1977) (N. 1978)	1.100.00	- 14 s. 3		Staal (1997) (19	
Bulk		400	400	400	400	400			(
SOI																	
MG		250	250	250	250	250	250	200	200	200	200	200	150	150	150	150	150
1 μH (nAiμm)[9]																	
Bulk/SOI/MG		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
T _{dpot} : NMDS Drive Current (µAlµm)[10]																	
Bulk		1,348	1,355	1,340	1,295	1,267											
SOI								2	5				8			20	
MG		1670	1,680	1,700	1,660	1,660	1,610	1,600	1,480	1,450	1,350	1,330	1,170	1,100	1,030	970	900
V 4,60 (V)/10					2			2	2 2	2			2	1		8	
D. II.		0 200	0 227	0 224	0 257	0 270											

Equivalent oxide thickness (EOT)

$$\text{EOT} = \frac{\mathcal{E}_{\text{Si0}_2}}{\mathcal{E}} t_{\text{high-k}} + t_{\text{Si0}_2}$$

Scaling can continue using oxides too thick to tunnel if they have a higher dielectric constant.

- A: Starting Material
- C: Well Doping
- E: Channel Doping and Channel Strain
- G: Extension Junction and Halo
- I: Elevated Junction and Contacts

- B: Isolation
- D: Channel Surface (Preparation)
- F: Gate Stack (Including Flash) and Spacer
- H: Contacting Source/Drain Junction
- J: DRAM Stack/Trench Cap. & FeRAM Storage

High frequencies

$$\begin{split} \tilde{i}_{in} &= 2\pi f C_G \tilde{v}_G & \tilde{i}_{out} = g_m \tilde{v}_G \\ & \tilde{i}_{in} < \tilde{i}_{out} \\ & f < \frac{g_m}{2\pi C_G} \propto \frac{1}{s^2} = f_T \end{split}$$

For large *E*, Ohm's law $(j = ne\mu E)$ is not valid. The electron velocity saturates. For velocity saturation:

$$f_T \approx \frac{v_s}{L}$$

Short channel effects

© E. F. Schubert, Rensselaer Polytechnic Institute, 2003

Smart Cut

http://en.wikipedia.org/wiki/Silicon_on_insulator

Buried Oxide

TEM image of a 3 nm Si cap/15 nm SiGe 50% /10 nm strained SOI structure grown at CEA-Leti and used for p-SiGe MOSFET fabrication.

http://www.fz-juelich.de/pgi/pgi-9/EN/Forschung/08strained%20silicon/04_Biaxially%20strained%20Si_SiGe_%28S%29SOI%20heterostructure/_node.html

MOSFET (saturation regime)

Experimentally: channel length modulation

 $\lambda \propto \frac{1}{L}$

Drain-induced barrier lowering (DIBL)

In cut-off $V_G < V_T$, there should be a barrier that prevents current flow. This barrier is reduced in a short channel device.

Subthreshold current

For $V_G < V_T$ the transistor should switch off but there is a diffusion current. The current is not really off until ~ 0.5 V below the threshold voltage.

Subthreshold swing: 70-100 mV/decade

CMOS inverter

Complementary Metal Oxide Semiconductor

$$E = QV_{dd} = CV_{dd}^2$$

Gate delay

SRAM

Static random access memory

No refresh circuitry needed.

DRAM

Dynamic random access memory

DRAM

Read and refresh DRAM with a SRAM cell

Flash memory

Charge is stored on a floating gate

nonvolatile

Phase change memory

Phase-change memory (PRAM) uses chalcogenide materials. These can be switched between a low resistance crystalline state and a high resistance amorphous state.

GeSbTe is melted by a laser in rewritable DVDs and by a current in PRAM.

