

Technische Universität Graz

2. Intrinsic semiconductors

Crystal Structure

Atoms are arranged in a periodic pattern in a crystal.

The atomic arrangement affects the macroscopic properties of a material.

Many important materials (silicon, steel) are crystals

Gallium crystals

quartz

Insulin crystals

Crystal Structure

simple cubic

body centered cubic, bcc

face centered cubic, fcc

Crystal planes and directions: Miller indices

{ } family of equivalent planes

MOSFETs are made on <100> wafers

silicon

http://lampx.tugraz.at/~hadley/memm/materials/silicon/silicon.php

KOH etching of silicon

KOH etches Si $\{110\} > \{100\} > \{111\}$, producing a characteristic anisotropic V-etch, with sidewalls that form a 54.7° angle with the surface (35.3° from the normal).

http://www.ece.uncc.edu/research/clean_room/fabprocesses/KOH-EtchingAndDecon.pdf

Crystal structures

face centered cubic (fcc)

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/fcc/fcc_jsmol.php

hexangonal close pack (hcp)

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/hcp/hcp_jsmol.php

Close packing

HCP = Hexagonal close pack Hexagonal Bravais lattice with two atoms in the basis.

body centered cubic bcc

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/bcc/bcc_jsmol.php

zincblende

 $http://lampx.tugraz.at/\sim hadley/ss1/crystal structure/structures/zincblende/zincblende_jsmol.php$

http://cst-www.nrl.navy.mil/lattice/

Structural phase transitions

GaAs, Zincblende

GaAs, Wurtzite

3C - SiC

4H - SiC

6H - SiC

SiC has about 100 polytypes

Electrons

Charge =
$$-1.6022 \times 10^{-19} \text{ C}$$

Mass = $9.11 \times 10^{-31} \text{ kg}$
Radius = ?

Quantum Mechanics

Everything moves like a wave but exchanges energy and momentum like a particle.

Everything moves like a wave but exchanges energy and momentum like a particle.

de aangegeven golflengten gelden in vacuüm energie energie hoofdquantum golflengte getal n =eV eV nm 14 13,5950 0 13,0560 13 12,7497 1280 1004 1870 | 1090 | - 1 12,0888 12 pascher 656 434 397 - 2 Fluorescent lamp 486 410 11 - 3 10,2002 10 balmer - 4 9 - 5 8 - 7 102,6 95,0 6 121,6 | 97,2 | 93,8 - 8 5 - 9 4 $hf = E_{\rm u} - E_{\rm l}$ -10 3 $4p_x$ -11 2 -12 1 -13 0,0000 -13,6 lyman

Molecular energy levels

Semiconductors

valence band conduction band band gap

molecular orbitals are plane waves

wave vector k

A *k*-vector points in the direction a wave is propagating.

wavelength:
$$\lambda = \frac{2\pi}{\left|\vec{k}\right|}$$

momentum:
$$\vec{p} = \hbar \vec{k}$$

Absorption and emission of photons

semiconductor

 $hf \le E_g$ no absorption

What color light does a GaAs LED emit?

$$E = 1.6022 \times 10^{-19} \times 1.43 \text{ J} = hf = \frac{hc}{\lambda}$$

 $\lambda = 867 \text{ nm}$ infrared

Direct and indirect band gaps

indirect bandgap $\Delta k \neq 0$

phonons are emitted

direct bandgap: $\Delta k = 0$

photons can be emitted

Momentum must be conserved when photons are absorbed or emitted.

Silicon band structure

Electrons with energies in the gap are reflected out of the crystal.

TABLE 1 Common III-V materials used to produce LEDs and their emission wavelengths.

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600
$Ga_{0.47}In_{0.53}As$	1550
$Ga_{0.27}In_{0.73}As_{0.63}P_{0.37}$	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
$Al_xGa_{1-x}As:Si$	650-940
GaAs:Si	940
$Al_{0.11}Ga_{0.89}As:Si$	830
Al _{0.4} Ga _{0.6} As:Si	650
$GaAs_{0.6}P_{0.4}$	660
$GaAs_{0.4}P_{0.6}$	620
$GaAs_{0.15}P_{0.85}$	590
$(Al_xGa_{1-x})_{0.5}In_{0.5}P$	655
GaP	690
GaP:N	550-570
$Ga_xIn_{1-x}N$	340,430,590
SiC	400-460
BN	260,310,490

Light emitting diodes

Metals, semiconductors, insulators

Semiconductor or insulator

$$E_g < 3 \text{eV} = \text{Semiconductor}$$

 $E_g > 3 \text{eV} = \text{Insulator}$

from: Singh

Copper dispersion relation and density of states

Germanium

Band gap

Electrons with energies in the gap are reflected out of the crystal.

Density of states

Structural phase transition in Sn

α-Sn, gray tin, diamond structure

Structural phase transitions

Si, diamond structure

Si II, β -Sn, tetragonal

silicon makes a diamond to β -Sn transition under pressure

Fermi function

f(E) is the probability that a state at energy E is occupied.

Silicon density of states

