[^0]
2. Intrinsic semiconductors

Oct. 9, 2019

Crystal Structure

Atoms are arranged in a periodic pattern in a crystal.
The atomic arrangement affects the macroscopic properties of a material.

Many important materials (silicon, steel) are crystals

Gallium crystals

quartz

Insulin crystals

Crystal Structure

simple cubic

body centered cubic, bcc

face centered cubic, fcc

Crystal planes and directions: Miller indices

plan (111)

[] specific direction
$<>$ family of equivalent directions
() specific plane
\{ \} family of equivalent planes

A plane with the intercepts $1 / h$, $1 / k, 1 / l$ is the (h, k, l) plane.

MOSFETs are made on $<100>$ wafers

silicon

The conventional unit cell is a cube with sides of 0.543 nm . There are 8 atoms atoms in the conventional unit cell. (The image can be rotated with a mouse.)

JSmol
http://lampx.tugraz.at/~hadley/memm/materials/silicon/silicon.php

Silicon surfaces

(Source: Sandia Nat.Labs.)

$\mathbf{S i}(100)$

KOH etching of silicon

KOH etches Si $\{110\}>\{100\}>\{111\}$, producing a characteristic anisotropic V-etch, with sidewalls that form a 54.7° angle with the surface (35.3° from the normal).
http://www.ece.uncc.edu/research/clean_room/fabprocesses/KOHEtchingAndDecon.pdf

Crystal structures

face centered cubic (fcc)

Al, Cu, Ni, Ag, Pt, Au, Pb

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/fcc/fcc_jsmol.php

hexangonal close pack (hcp)

Ti, Co, Zn, Zr,

$$
\begin{aligned}
& \text { HM:P 63/m m c } \\
& a=2.50 \mathrm{~m} \\
& \mathrm{~b}=2.507 \AA \\
& \mathrm{c}=4.069 \AA \\
& \alpha=90.000^{\circ} \\
& \beta=90.000^{\circ} \\
& Y=120.000^{\circ}
\end{aligned}
$$

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/hcp/hcp_jsmol.php

Close packing

$\mathrm{HCP}=$ Hexagonal close pack
Hexagonal Bravais lattice with two atoms in the basis.

body centered cubic bcc

W
Cr
Fe
Mo
Ta

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/bcc/bcc_jsmol.php

zincblende

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/zincblende/zincblende_jsmol.php
wurtzite

http://cst-www.nrl.navy.mil/lattice/

Structural phase transitions

GaAs, Zincblende

GaAs, Wurtzite

3C-SiC

$4 \mathrm{H}-\mathrm{SiC}$

6H - SiC

SiC has about 100 polytypes

Electrons

> Charge $=-1.6022 \times 10^{-19} \mathrm{C}$
> Mass $=9.11 \times 10^{-31} \mathrm{~kg}$
> Radius $=?$

0.15 nm

Everything moves like a wave but exchanges energy and momentum like a particle.

de aangegeven golflengten gelden in vacuüm

Molecular energy levels

Semiconductors

(a)

valence band conduction band band gap

molecular orbitals are plane waves

wave vector k

A k-vector points in the direction a wave is propagating.

$$
\begin{array}{ll}
\text { wavelength: } & \lambda=\frac{2 \pi}{|\vec{k}|} \\
\text { momentum: } & \vec{p}=\hbar \vec{k}
\end{array}
$$

Absorption and emission of photons

absorption

semiconductor
$h f<E_{g}$ no absorption
emission

What color light does a GaAs LED emit?

$$
\begin{gathered}
E=1.6022 \times 10^{-19} \times 1.43 \mathrm{~J}=h f=\frac{h c}{\lambda} \\
\lambda=867 \mathrm{~nm} \quad \text { infrared }
\end{gathered}
$$

Direct and indirect band gaps

indirect bandgap
$\Delta k \neq 0$
phonons are emitted direct bandgap:
$\Delta k=0$
photons can be emitted

Indium Arsenide

Momentum must be conserved when photons are absorbed or emitted.

Silicon band structure

Electrons with energies in the gap are reflected out of the crystal.

TABLE 1 Common III-V materials used to produce LEDs and their emission wavelengths.

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$\mathrm{Ga}_{x} \mathrm{In}_{1-x} \mathrm{As}_{1-y} \mathrm{P}_{y}$	1100-1600
$\mathrm{Ga}_{0.47} \mathrm{In}_{0.53} \mathrm{As}$	1550
$\mathrm{Ga}_{0.27} \mathrm{In}_{0.73} \mathrm{As}_{0.63} \mathrm{P}_{0.37}$	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
$\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}: \mathrm{Si}$	650-940
GaAs:Si	940
$\mathrm{Al}_{0.11} \mathrm{Ga}_{0.89} \mathrm{As}: \mathrm{Si}$	830
$\mathrm{Al}_{0.4} \mathrm{Ga}_{0.6} \mathrm{As}: \mathrm{Si}$	650
$\mathrm{GaAs}_{0.6} \mathrm{P}_{0.4}$	660
$\mathrm{GaAs}_{0.4} \mathrm{P}_{0.6}$	620
$\mathrm{GaAs}_{0.15} \mathrm{P}_{0.85}$	590
$\left(\mathrm{Al}_{x} \mathrm{Ga}_{1-\mathrm{x}}\right)_{0.5} \mathrm{In}_{0.5} \mathrm{P}$	655
GaP	690
GaP:N	550-570
$\mathrm{Ga}_{x} \mathrm{In}_{1-x} \mathrm{~N}$	340,430,590
SiC	400-460
BN	260,310,490

Light emitting diodes

Metals, semiconductors, insulators

Semiconductor or insulator
$E_{g}<3 \mathrm{eV}=$ Semiconductor
$E_{g}>3 \mathrm{eV}=$ Insulator

Copper dispersion relation and density of states

from Ibach \& Lueth

Germanium

from Ibach \& Lueth

Band gap

Electrons with energies in the gap are reflected out of the crystal.

Density of states

Silicon

filled states

Aluminum

empty states

Structural phase transition in Sn

$\beta-\mathrm{Sn}$, white tin, tetragonal
$\alpha-\mathrm{Sn}$, gray tin, diamond structure

Structural phase transitions

Si, diamond structure

Si II, $\beta-\mathrm{Sn}$, tetragonal
silicon makes a diamond to β-Sn transition under pressure

Fermi function

$f(E)$ is the probability that a state at energy E is occupied.

Silicon density of states

[^0]: Technische Universität Graz

