

Technische Universität Graz

Institute of Solid State Physics

Heterojunction bipolar transistors, thyristors, and Latch-up

Heterojunction bipolar transistors

Semiinsulating GaAs substrate

Heterojunction bipolar transistor

HBT current gain

$$I_{C} = \beta I_{B}$$
$$\beta = \frac{\alpha}{1 - \alpha} \approx \frac{n_{B0}}{p_{E0}} \qquad (\text{npn})$$

Higher doping in the emitter makes the minority carrier concentration lower in the emitter.

$$n_{B0} = \frac{n_i^2}{N_A} = \frac{N_C N_V \exp(-E_{gB} / k_B T)}{N_A}$$
$$p_{E0} = \frac{n_i^2}{N_D} = \frac{N_C' N_V' \exp(-E_{gE} / k_B T)}{N_D}$$

If the emitter and the base have different band gaps

$$\beta = \frac{N_E}{N_B} \frac{N_c N_v}{N_c' N_v'} \exp\left(\frac{\Delta E_g}{k_B T}\right) \sim 100000$$

HBT current gain

A HBT has an emitter bandgap of 1.62 and a base bandgap of 1.42. A BJT has an emitter bandgap of 1.42 and a base bandgap of 1.42. Both have an emitter doping of 10¹⁸ cm⁻³ and a base doping of 10¹⁵cm⁻³. How much larger is the gain in the HBT?

$$\frac{\beta(\text{HBT})}{\beta(\text{BJT})} = \exp\left(\frac{\Delta E_g}{k_B T}\right) = \exp\left(\frac{1.62 - 1.42}{0.0259}\right) = 2257$$

HBT

Trade off gain for higher speed

Higher base doping lower base resistance reduced Early effect less trouble with punch through base can be made thinner -> faster transistors

Because of higher base doping, a higher collector doping is possible without punch through

lower collector resistance

HBT current gain

band discontinuity reduces emitter efficiency Graded layer emitter and base improve performance

Heterojunction bipolar transistors

Fastest InP/InGaAs HBT's have an f_T of 710 GHz.

Higher doping in the base allows for a thinner base without punch through and lower base resistance and thus higher frequency operation

Microwave engineering

- Electronics: $L \ll \lambda$ $f \ll 10 \text{ GHz}$
- Microwave: $\lambda < L$ 10 GHz $\leq f \leq$ 1 THz
- TeraHertz: $\lambda \ll L$ 1 THz $\leq f \leq 100$ THz
- Optics: $\lambda \ll L$ 100 THz

Thyristors

Thyristors

Used for switching high currents or voltages

Latch-up

Both BJT's conduct, creating a low resistance path between V_{dd} and GND. The product of the gains of the two transistors in the feedback loop, is greater than one. The result of latchup is at the minimum a circuit malfunction, and in the worst case, the destruction of the device.

http://www.ece.drexel.edu/courses/ECE-E431/latch-up/latch-up.html

Subthreshold current

If the p-concentration in the channel is low, electrons emitted into the channel by the forward biased junction diffuse across the channel without recombining.

Interdigitated contacts in power transistors

IGBT - Insulated Gate Bipolar Transistor

An IGBT is a combination of an insulated gate FET and a bipolar transistor. It is primarily used for switching high power loads

Used to switch large currents (in electric cars or trains).

http://lampx.tugraz.at/~hadley/psd/L13/igbt.html

BICMOS

Only one additional step to CMOS is needed for BiCMOS

Bipolar junction transistors: high speed high gain low output impedance good for analog amplifiers

CMOS high impedance low power logic

See: http://www.iue.tuwien.ac.at/phd/puchner/node48_app.html

Antimony (Sb) has a low vapor pressure and won't evaporate during the subsequent CVD step

Epi-growth

Collector Contact

Guard ring

p-well

