

Technische Universität Graz

Institute of Solid State Physics

Carrier Transport

Technische Universität Graz

Carrier Transport

Ballistic transport Drift Diffusion Generation and recombination The continuity equation High field effects

Ballistic transport

Electrons moving in an electric field follow parabolic trajectories like a ball in a gravitational field.

Drift

The electrons scatter and change direction after a time τ_{sc} .

Classical equipartition: $\frac{1}{2}mv_{th}^2 = \frac{3}{2}k_BT$

At 300 K, $v_{th} \sim 10^7$ cm/s.

mean free path: $\ell = v_{th} \tau_{sc} \sim 10 \text{ nm} \sim 200 \text{ atoms}$

Drift (diffusive transport)

$$\vec{F} = -e\vec{E} = m^*\vec{a} = m^*\frac{d\vec{v}}{dt}$$
$$\vec{v} = \vec{v}_0 - \frac{e\vec{E}}{m^*}(t - t_0)$$

time between two collisions

 $<_{v_0}> = 0$ $< t - t_0> = \tau_{sc}$

$$\vec{v}_d = \frac{-eE\tau_{sc}}{m^*} = \frac{-eE\ell}{m^*v}$$

drift velocity:
$$\vec{v}_{d,n} = -\mu_n \vec{E}$$
 $\vec{v}_{d,p} = \mu_p \vec{E}$

Drift

drift velocity:
$$\vec{v}_{d,n} = -\mu_n \vec{E}$$
 $\vec{v}_{d,p} = \mu_p \vec{E}$

$$\vec{j} = -ne\vec{v}_{d,n} + pe\vec{v}_{d,p} = \left(ne\mu_n + pe\mu_p\right)\vec{E} = \sigma\vec{E}$$

$$\mu = \frac{-e\tau_{sc}}{m^*} = \frac{-e\ell}{m^*v}$$

for Si:
$$\mu_n = 1500 \text{ cm}^2/\text{Vs}$$

 $\mu_p = 450 \text{ cm}^2/\text{Vs}$

For
$$E = 1000 \text{ V/cm}$$
 $v_d = 10^6 \text{ cm/s}$

74 C: \Program Files\Cornell\SSS\winbin\drude.exe							
	quit display:	large co	nfigure	presets help			
🔲 show graph	show average	run		show graph	show average		
time (ps) 32.3		initializ	ze				
		E_x (10^4 V/m): ⊠	10	1			
		E_y (10^4 V/m):	10	· · · ·	*		
~~ ? * •	•	B_z (T):	2		• • • • • • • • •		
ૻૺૼૼૼૼ૾૽૾૽ૼ૽૽ૼૼ૾૾ૢ૽ૼ૽૾ૼ૽૽ૼ૾૾ૢ૽	b	tau (ps):	1.00e+00	(
	ř	temperature (K):	300		* «**** *		
• •		omega (10^12/sec):	0		•		
		phase (radians):	0.0				
		speed	2	-			
 position: (4.14, -0.66)) 10^-6 m			velocity: (0),0) 10^4 m/s		

Drift

		E _g (eV)	μ, (cm²/V-s)	μ _ρ (cm²/V-s)	m [*] n/m _o (mı,mı)	m [*] _p /m _o (m _{lh} ,m _{hh})	a (Å)	€ _r	Density (g/cm ³)	Melting point (°C)
Si	(<i>i/D</i>)	1.11	1350	480	0.98, 0.19	0.16, 0.49	5.43	11.8	2.33	1415
Ge	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936
SiC (a)	(i/W)	2.86	500	_	0.6	1.0	3.08	10.2	3.21	2830
AIP	(i/Z)	2.45	80	-	-	0.2, 0.63	5.46	9.8	2.40	2000
AlAs	(i/Z)	2.16	1200	420	2.0	0.15, 0.76	5.66	10.9	3.60	1740
AlSb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080
GaP	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467
GaAs	$\left(\frac{d}{Z}\right)$	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238
GaN	(d/Z, W)	3.4	380		0.19	0.60	4.5	12.2	6.1	2530
GaSb	(d/Z)	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712
InP	(d/Z)	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070
InAs	(d/Z)	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943
InSb	$\left(\frac{d}{Z}\right)$	0.18	10 ⁵	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525
ZnS	(d/Z, W)	3.6	180	10	0.28		5.409	8.9	4.09	1650*
ZnSe	$\left(\frac{d}{Z}\right)$	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100
ZnTe	$\left(\frac{d}{Z}\right)$	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238
CdS	(d/W, Z)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475
CdSe	(d/M)	1.73	800	10000 C	0.13	0.45	4.30	10.2	5.81	1258
CdTe	$\left(\frac{d}{Z}\right)$	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098
PbS	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119
PbSe	(i/H)	0.27	1500	1500	_	_	6.147	23.6	8.73	1081
PbTe	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925

 $\vec{v}_{d,n} = -\mu_n \vec{E}$ $\vec{v}_{d,p} = \mu_p \vec{E}$

$$\vec{j} = -ne\vec{v}_{d,n} + pe\vec{v}_{d,p} = \left(ne\mu_n + pe\mu_p\right)\vec{E} = \sigma\vec{E}$$

Matthiessen's rule

Mobility calculator

$$\mu = \mu_{min} + rac{\mu_{max}-\mu_{min}}{1+(N/N_{ref})^{\gamma}}$$

For Electrons:

$$\mu_{min}\,=\,47ig(rac{T}{300}ig)^{-1,23}\,rac{{
m cm}^2}{{
m Vs}}$$

$$\Delta \mu \,=\, \mu_{max} - \mu_{min} \,=\, 1373 ig(rac{T}{300}ig)^{-2,38} \, rac{cm^2}{Vs}$$

$$N_{ref}\,=\,1,05\cdot10^{17}ig(rac{T}{300}ig)^{3,65}\,cm^{-3}$$
 ; $\gamma\,=\,0,68ig(rac{T}{300}ig)^{-0,32}$

$$egin{aligned} \mu_{min} &= 36ig(rac{T}{300}ig)^{-0.87}rac{\mathrm{cm}^2}{\mathrm{Vs}}\ \Delta \mu &= \mu_{max} - \mu_{min} \,= \,438ig(rac{T}{300}ig)^{-2.01}rac{\mathrm{cm}^2}{\mathrm{Vs}}\ N_{ref} \,= \,2,85\cdot 10^{17}ig(rac{T}{300}ig)^{2.93}\,\mathrm{cm}^{-3} \ ; \gamma \,= \,0,65ig(rac{T}{300}ig)^{0.26} \end{aligned}$$

INPUTS cm⁻³ Semiconductor material c-silicon Excess electron conc. An ¥ Δρ cm⁻³ ¥ Excess hole conc. Dopant atom boron Ionised dopant conc. Ndop 1E+16 cm⁻³ Electron eff. lifetime 1E-4 s Teff e Temperature 300 К Hole eff. lifetime 1E-4 T Teff h S

💹 OUTPUTS 🖉

	Carrier conce	entrations		Carrier mobility etc.				
	Equilibrium no, po (cm ⁻³)	Excess Δn, Δρ (cm ⁻³)	Net <i>n,p</i> (cm ⁻³)	Mobility $\mu_e, \mu_h, \mu_{\theta}$ $(cm^2V^{-1}s^{-1})$	Diffusivity D _e , D _h , D _a (cm ² s ⁻¹)	Diff Length L _e , L _h , L _a (cm)		
ns	9300	1.0	9300	1107	28.61	5.349E-2		
	1.0E+16	1.0	1.0E+16	429.3	11.10	3.331E-2		
əlar				1107	28.61	5.349E-2		

http://www.pvlighthouse.com.au/calculators/mobility%20 calculator/mobility%20 calculator.aspx

Resistivity calculator

$$\sigma = \frac{1}{\rho} = ne\mu_n + pe\mu_p$$

$$calculator \\ (acculator) \\ calculator \\ calculator$$

LIGHTHOUSE

http://www.pvlighthouse.com.au/calculators/Resistivity%20calculator/Resistivity%20calculator.aspx

Crossed E and B fields

Magnetic field (diffusive transport)

$$\vec{F} = m\vec{a} = -e\vec{E} = e\frac{\vec{v}_d}{\mu}$$
$$\vec{F} = m\vec{a} = -e\left(\vec{E} + \vec{v}_d \times \vec{B}\right) = e\frac{\vec{v}_d}{\mu}$$

If *B* is in the *z*-direction, the three components of the force are

$$-\mu \left(E_x + v_{dy} B_z \right) = v_{dx}$$
$$-\mu \left(E_y - v_{dx} B_z \right) = v_{dy}$$

$$-\mu E_z = v_{dz}$$

Magnetic field

$$v_{d,x} = -\mu E_x - \mu B_z v_{d,y}$$

$$v_{d,y} = -\mu E_y + \mu B_z v_{d,x}$$

$$v_{d,z} = -\mu E_z$$

If
$$E_y = 0$$
,

$$v_{d,y} = -\mu B_z v_{d,x}$$

$$\tan \theta_{H} = -\mu B_{z}$$

The Hall Effect (diffusive regime)

 $E_y = v_x B_z = V_H / W = R_H j_x B_z$ V_H = Hall voltage, R_H = Hall Constant

The Hall Effect (diffusive regime)

$$E_{y} = v_{x}B_{z} = V_{H}/W = R_{H}j_{x}B_{z} \qquad V_{H} = \text{Hall}$$

$$j_{x} = I/A$$

$$v_{x} = -j_{x}/ne \quad \text{for n-type} \qquad v_{x} = j_{x}/pe$$

$$R_{H} = -1/ne \quad \text{for n-type} \qquad R_{H} = 1/pe$$

voltage, R_H = Hall Constant

for n_type

$$V_x = J_x/pe$$
 for p-type
 $R_H = 1/pe$ for p-type

Ballistic transport in transistors

The mean free path $\sim 100 \text{ nm} > \text{gate length} \sim 20 \text{ nm}$

v not proportional to E

j not proportional to E

nonlocal response

Electrons bend in a magnetic field like they do in vacuum.

Diffusion

Diffusion is from high concentration to low concentration.

74 C: \Program Files\Cornell\SSS\winbin\drude.exe							
	quit display:	large co	nfigure	presets help			
🔲 show graph	show average	run		show graph	show average		
time (ps) 32.3		initializ	ze				
		E_x (10^4 V/m): ⊠	10	1			
		E_y (10^4 V/m):	10		*		
~~ ? * •	•	B_z (T):	2		• • • • • • • • •		
ૻૺૼૼૼૼ૾૽૾૽ૼ૽૽ૼૼ૾૾ૢ૽ૼ૾૽ૼ૽૽ૼ૾૾ૢ૽	b	tau (ps):	1.00e+00	(
	ř	temperature (K):	300		* «**** *		
• •		omega (10^12/sec):	0	÷.	•		
		phase (radians):	0.0				
		speed	2	-			
 position: (4.14, -0.66)) 10^-6 m			velocity: (0),0) 10^4 m/s		

Drift

		E _g (eV)	μ, (cm²/V-s)	μ _ρ (cm²/V-s)	m [*] n/m _o (mı,mı)	m [*] _p /m _o (m _{lh} ,m _{hh})	a (Å)	€ _r	Density (g/cm ³)	Melting point (°C)
Si	(<i>i/D</i>)	1.11	1350	480	0.98, 0.19	0.16, 0.49	5.43	11.8	2.33	1415
Ge	(i/D)	0.67	3900	1900	1.64, 0.082	0.04, 0.28	5.65	16	5.32	936
SiC (a)	(i/W)	2.86	500	_	0.6	1.0	3.08	10.2	3.21	2830
AIP	(i/Z)	2.45	80	-	-	0.2, 0.63	5.46	9.8	2.40	2000
AlAs	(i/Z)	2.16	1200	420	2.0	0.15, 0.76	5.66	10.9	3.60	1740
AlSb	(i/Z)	1.6	200	300	0.12	0.98	6.14	11	4.26	1080
GaP	(i/Z)	2.26	300	150	1.12, 0.22	0.14, 0.79	5.45	11.1	4.13	1467
GaAs	$\left(\frac{d}{Z}\right)$	1.43	8500	400	0.067	0.074, 0.50	5.65	13.2	5.31	1238
GaN	(d/Z, W)	3.4	380		0.19	0.60	4.5	12.2	6.1	2530
GaSb	(d/Z)	0.7	5000	1000	0.042	0.06, 0.23	6.09	15.7	5.61	712
InP	(d/Z)	1.35	4000	100	0.077	0.089, 0.85	5.87	12.4	4.79	1070
InAs	(d/Z)	0.36	22600	200	0.023	0.025, 0.41	6.06	14.6	5.67	943
InSb	$\left(\frac{d}{Z}\right)$	0.18	10 ⁵	1700	0.014	0.015, 0.40	6.48	17.7	5.78	525
ZnS	(d/Z, W)	3.6	180	10	0.28		5.409	8.9	4.09	1650*
ZnSe	$\left(\frac{d}{Z}\right)$	2.7	600	28	0.14	0.60	5.671	9.2	5.65	1100
ZnTe	$\left(\frac{d}{Z}\right)$	2.25	530	100	0.18	0.65	6.101	10.4	5.51	1238
CdS	(d/W, Z)	2.42	250	15	0.21	0.80	4.137	8.9	4.82	1475
CdSe	(d/M)	1.73	800	10000 C	0.13	0.45	4.30	10.2	5.81	1258
CdTe	$\left(\frac{d}{Z}\right)$	1.58	1050	100	0.10	0.37	6.482	10.2	6.20	1098
PbS	(i/H)	0.37	575	200	0.22	0.29	5.936	17.0	7.6	1119
PbSe	(i/H)	0.27	1500	1500	_	_	6.147	23.6	8.73	1081
PbTe	(i/H)	0.29	6000	4000	0.17	0.20	6.452	30	8.16	925

 $\vec{v}_{d,n} = -\mu_n \vec{E}$ $\vec{v}_{d,p} = \mu_p \vec{E}$

$$\vec{j} = -ne\vec{v}_{d,n} + pe\vec{v}_{d,p} = \left(ne\mu_n + pe\mu_p\right)\vec{E} = \sigma\vec{E}$$

Matthiessen's rule

Mobility calculator

$$\mu = \mu_{min} + rac{\mu_{max}-\mu_{min}}{1+(N/N_{ref})^{\gamma}}$$

For Electrons:

$$\mu_{min}\,=\,47ig(rac{T}{300}ig)^{-1,23}\,rac{{
m cm}^2}{{
m Vs}}$$

$$\Delta \mu \,=\, \mu_{max} - \mu_{min} \,=\, 1373 ig(rac{T}{300}ig)^{-2,38} \, rac{cm^2}{Vs}$$

$$N_{ref}\,=\,1,05\cdot10^{17}ig(rac{T}{300}ig)^{3,65}\,cm^{-3}$$
 ; $\gamma\,=\,0,68ig(rac{T}{300}ig)^{-0,32}$

$$egin{aligned} \mu_{min} &= 36ig(rac{T}{300}ig)^{-0.87}rac{\mathrm{cm}^2}{\mathrm{Vs}}\ \Delta \mu &= \mu_{max} - \mu_{min} \,= \,438ig(rac{T}{300}ig)^{-2.01}rac{\mathrm{cm}^2}{\mathrm{Vs}}\ N_{ref} \,=\, 2,85\cdot 10^{17}ig(rac{T}{300}ig)^{2.93}\,\mathrm{cm}^{-3}\ ;\, \gamma \,=\, 0,65ig(rac{T}{300}ig)^{0.26} \end{aligned}$$

INPUTS cm⁻³ Semiconductor material c-silicon Excess electron conc. An ¥ Δρ cm⁻³ ¥ Excess hole conc. Dopant atom boron Ionised dopant conc. Ndop 1E+16 cm⁻³ Electron eff. lifetime 1E-4 s Teff e Temperature 300 К Hole eff. lifetime 1E-4 T Teff h S

💹 OUTPUTS 🖉

	Carrier conce	entrations		Carrier mobility etc.				
	Equilibrium no, po (cm ⁻³)	Excess Δn, Δp (cm ⁻³)	Net <i>n,p</i> (cm ⁻³)	Mobility $\mu_e, \mu_h, \mu_{\theta}$ $(cm^2V^{-1}s^{-1})$	Diffusivity D _e , D _h , D _a (cm ² s ⁻¹)	Diff Length L _e , L _h , L _a (cm)		
ns	9300	1.0	9300	1107	28.61	5.349E-2		
	1.0E+16	1.0	1.0E+16	429.3	11.10	3.331E-2		
əlar				1107	28.61	5.349E-2		

http://www.pvlighthouse.com.au/calculators/mobility%20 calculator/mobility%20 calculator.aspx

Resistivity calculator

$$\sigma = \frac{1}{\rho} = ne\mu_n + pe\mu_p$$

$$calculator \\ (acculator) \\ calculator \\ calculator$$

LIGHTHOUSE

http://www.pvlighthouse.com.au/calculators/Resistivity%20calculator/Resistivity%20calculator.aspx

Crossed E and B fields

Magnetic field (diffusive transport)

$$\vec{F} = m\vec{a} = -e\vec{E} = e\frac{\vec{v}_d}{\mu}$$
$$\vec{F} = m\vec{a} = -e\left(\vec{E} + \vec{v}_d \times \vec{B}\right) = e\frac{\vec{v}_d}{\mu}$$

If *B* is in the *z*-direction, the three components of the force are

$$-\mu \left(E_x + v_{dy} B_z \right) = v_{dx}$$
$$-\mu \left(E_y - v_{dx} B_z \right) = v_{dy}$$

$$-\mu E_z = v_{dz}$$

Magnetic field

$$v_{d,x} = -\mu E_x - \mu B_z v_{d,y}$$

$$v_{d,y} = -\mu E_y + \mu B_z v_{d,x}$$

$$v_{d,z} = -\mu E_z$$

If
$$E_y = 0$$
,

$$v_{d,y} = -\mu B_z v_{d,x}$$

$$\tan \theta_{H} = -\mu B_{z}$$

The Hall Effect (diffusive regime)

 $E_y = v_x B_z = V_H / W = R_H j_x B_z$ V_H = Hall voltage, R_H = Hall Constant

The Hall Effect (diffusive regime)

$$E_{y} = v_{x}B_{z} = V_{H}/W = R_{H}j_{x}B_{z} \qquad V_{H} = \text{Hall}$$

$$j_{x} = I/A$$

$$v_{x} = -j_{x}/ne \quad \text{for n-type} \qquad v_{x} = j_{x}/pe$$

$$R_{H} = -1/ne \quad \text{for n-type} \qquad R_{H} = 1/pe$$

voltage, R_H = Hall Constant

for n_type

$$V_x = J_x/pe$$
 for p-type
 $R_H = 1/pe$ for p-type

Ballistic transport in transistors

The mean free path $\sim 100 \text{ nm} > \text{gate length} \sim 20 \text{ nm}$

v not proportional to E

j not proportional to E

nonlocal response

Electrons bend in a magnetic field like they do in vacuum.

Diffusion

Diffusion is from high concentration to low concentration.

74 C:\Program Files\Cornell\SSS\winbin\drude.exe		
quit display	large configure	presets help
show graph show average	run	show graph show average
time (ps) 89.0	initialize	•
യം	E_x (10^4 V/m): 0.0	•
• 0	E_y (10^4 V/m): 0.0	
	B_z (T): 0.0	
6 6 6 6 6 6 6 6 6 6	tau (ps): 1.00e+00	
କୁଁ ବ _ି ଦି	temperature (K): 300	
\$\$ 	omega (10^12/sec): 0	•
	phase (radians): 0.0	
	speed 2	
position: (4.12, 2.06) 10^-6 m		velocity: (-28.4, 40.0) 10^4 m/s

If no forces are applied, the electrons diffuse.

The average velocity moves against an electric field.

In just a magnetic field, the average velocity is zero.

In an electric and magnetic field, the electrons move in a straight line at the Hall angle.

Einstein relation

$$\vec{E} = -\nabla V \qquad n = A \exp\left(\frac{-eV}{k_B T}\right)$$

Boltzmann factor

In equilibrium, drift = diffusion

 $-en\mu\vec{E} + eD\nabla n = 0$

$$\nabla n = -\frac{e}{k_B T} A \exp\left(\frac{-eV_{pot}}{k_B T}\right) \nabla V = -\frac{ne}{k_B T} \nabla V = \frac{ne\vec{E}}{k_B T}$$
$$-en\mu\vec{E} + eD\frac{ne\vec{E}}{k_B T} = 0$$
$$D = \frac{\mu k_B T}{e}$$

Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen

Current Density Equations

$$j_{total} = j_n + j_p$$

Current Density Equations

note: electron and hole currents have same direction electric current = charge × particle flow

Continuity equations

$$\frac{\partial n}{\partial t} = \frac{1}{e} \nabla \cdot \vec{j}_n + G_n - R_n$$

$$\frac{\partial p}{\partial t} = -\frac{1}{e} \nabla \cdot \vec{j}_p + G_p - R_p$$

 j_n and j_p consist of drift and diffusion terms

Generation and Recombination

Shining light on a semiconductor or injecting electrons or holes from a contact can result in a **non-equilibrium** distribution $np \neq n_i^2$

non equilibrium

Recombination

$$E_{c} \xrightarrow{hf} G_{L} \qquad f_{th} \qquad R \qquad R - R_{th} = \frac{p_{n} - p_{n0}}{\tau_{p}}$$

Recombination rate is limit by the density of minority carriers. The majority carriers have to find a minority carrier to recombine.

 $p_{n} (\text{or } n_{p}) = \text{minority carrier concentration}$ $p_{n0} (\text{or } n_{p0}) = \text{equilibrium minority carrier concentration}$ $\tau_{p} = \text{minority carrier lifetime}$ $p_{n}(t)$ $p_{n}(0)$ $p_{n}(0)$ $r_{p}G_{L}$ $p_{n}(0)$ $r_{p}G_{L}$ $p_{n}(0)$ r_{p} t

minority carrier lifetimes

$$np = n_i^2$$

$$\frac{\partial n}{\partial t} = \frac{1}{e} \nabla \cdot \vec{j}_n + G_n - R_n$$

drift:
$$\vec{j}_n = -ne\mu_n \vec{E}$$
 $\nabla \cdot \vec{j}_n = -en\mu_n \nabla \cdot \vec{E} - e\nabla n\mu_n \vec{E}$

diffusion:
$$\vec{j}_{n,diff} = |e| D_n \nabla n$$
 $\nabla \cdot \vec{j}_{n,diff} = |e| D_n \nabla^2 n$

$$\frac{\partial n}{\partial t} = n\mu_n \nabla \cdot \vec{E} + \nabla n\mu_n \vec{E} + D_n \nabla^2 n + G_n - \frac{n - n_0}{\tau_n}$$
$$\frac{\partial p}{\partial t} = -p\mu_p \nabla \cdot \vec{E} - \nabla p\mu_p \vec{E} + D_p \nabla^2 p + G_p - \frac{p - p_0}{\tau_p}$$

Diffusion Length

Generation only occurs at the surface. There the minority carrier density is $p_n(0)$.

Diffusion Length

$$0 = D_p \frac{\partial^2 p_n}{\partial x^2} - \frac{p_n - p_{n0}}{\tau_p} \quad \Leftrightarrow \quad p_n(x) = p_{n0} + \left(p_n(0) - p_{n0}\right) \exp\left(\frac{-x}{L_p}\right)$$

$$0 = \frac{D_p \left(p_n(0) - p_{n0} \right)}{L_p^2} \exp\left(\frac{-x}{L_p}\right) - \frac{\left(p_n(0) - p_{n0} \right)}{\tau_p} \exp\left(\frac{-x}{L_p}\right)$$

$$L_p = \sqrt{D_p \tau_p}$$

diffusion length, typically microns

Haynes Shockley experiment

$$n_{p}(x,t) = \frac{n_{generated}}{\sqrt{4\pi D_{n}t}} \exp\left(-\frac{\left(x-\mu_{n}Et\right)^{2}}{4D_{n}t}\right) \exp\left(-\frac{t}{\tau_{n}}\right) + n_{p0}$$

High Fields

Silicon

High Fields

GaAs

L

Impact ionization

Carriers are accelerated to an energy above the gap before they scatter. They generate more electron-hole pairs. This results in an avalanche breakdown of the device.

Photoconductivity

 $\sigma = ne\mu_n + pe\mu_p$

Light increases the conductivity of a semiconductor.

Laser printer

