

Technische Universität Graz

Institute of Solid State Physics

Crystal structures

Crystal Structure

Atoms are arranged in a periodic pattern in a crystal.

The atomic arrangement affects the macroscopic properties of a material.

Many important materials (silicon, steel) are crystals

quartz

Insulin crystals

Crystal structures

Miller indices: Crystal planes

[hkl] = vector in direction $h\vec{a}_1 + k\vec{a}_2 + l\vec{a}_3$

[] specific direction <> family of equivalent directions always use integers for h,k,l

silicon

JSmol

http://lampx.tugraz.at/~hadley/memm/materials/silicon/silicon.php

KOH etching of silicon

KOH etches Si $\{110\} > \{100\} > \{111\}$, producing a characteristic anisotropic V-etch, with sidewalls that form a 54.7° angle with the surface (35.3° from the normal).

http://www.ece.uncc.edu/research/clean_room/fabprocesses/KOH-EtchingAndDecon.pdf

Technische Universität Graz

Institute of Solid State Physics

Electrons in Crystals

Electrons

Charge = $-1.6022 \times 10^{-19} \text{ C}$ Mass = $9.11 \times 10^{-31} \text{ kg}$ Radius = ?

de aangegeven golflengten gelden in vacuüm

Molecular energy levels

wave vector k

A *k*-vector points in the direction a wave is propagating.

wavelength:
$$\lambda = \frac{2\pi}{|\vec{k}|}$$

momentum: $\vec{p} = \hbar \vec{k}$

$$\psi=e^{ikx}u_k(x)$$

Semiconductors

Absorption and emission of photons

What color light does a GaAs LED emit?

$$E = 1.6022 \times 10^{-19} \times 1.43 \text{ J} = hf = \frac{hc}{\lambda}$$

 $\lambda = 867 \text{ nm}$ infrared

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600
Ga _{0.47} In _{0.53} As	1550
Ga _{0.27} In _{0.73} As _{0.63} P _{0.37}	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
Al _r Ga _{1-r} As:Si	650-940
GaAs:Si	940
Al _{0.11} Ga _{0.89} As:Si	830
Al _{0.4} Ga _{0.6} As:Si	650
GaAs _{0.6} P _{0.4}	660
GaAs _{0.4} P _{0.6}	620
$GaAs_{0.15}P_{0.85}$	590
$(Al_xGa_{1-x})_{0.5}In_{0.5}P$	655
GaP	690
GaP:N	550-570
Ga _r In _{1-r} N	340,430,590
SiC	400-460
BN	260,310,490

TABLE 1Common III-V materials used to produceLEDs and their emission wavelengths.

Light emitting diodes

Direct and indirect band gaps

Momentum must be conserved when photons are absorbed or emitted.

Metals, semiconductors, insulators

Semiconductor or insulator

 $E_g < 3eV = Semiconductor$ $E_g > 3eV = Insulator$

from: Singh

Silicon band structure

Electrons with energies in the gap are reflected out of the crystal.

Copper dispersion relation and density of states

Germanium

from Ibach & Lueth

Band gap

Electrons with energies in the gap are reflected out of the crystal.

Density of states

Structural phase transition in Sn

 α -Sn, gray tin, diamond structure

Structural phase transitions

Fermi function

f(E) is the probability that a state at energy E is occupied.

Silicon density of states

Fermi energy

The Fermi energy is implicitly defined as the energy that solves the following equation.

$$n = \int_{-\infty}^{\infty} D(E) f(E) dE$$

Here *n* is the electron density.

The density of states, the total number of electrons and the temperature are given. To find the Fermi energy, guess one and evaluate the integral. If n turns out too low, guess a higher E_F and if n turns out too high, guess a lower E_F .

What is the Fermi energy at zero temperature? For a semiconductor, find the limiting value of the Fermi energy as the temperature approaches zero.

 $E_f =$ eV

What kind of material is this?

Technische Universität Graz

Institute of Solid State Physics

Intrinsic semiconductors

free electrons (simple model for a metal)

Silicon band structure

Near the bottom of the conduction band, the band structure looks like a parabola.

Effective mass

This effective mass is used to describe the response of electrons to external forces in the particle picture.

$$\vec{F} = -e\vec{E} = m^*\vec{a}$$