

Institute of Solid State Physics

Bipolar transistors, Thyristors, and Latch-up

Oxide isolated integrated BJT - a modern process

Forward bias, $V > 0$

Electrons and holes are driven towards the junction. The depletion region becomes

$$
n_p(x_p) = n_{p0} \exp\left(\frac{eV}{k_B T}\right)
$$

$$
\frac{eV}{k_B T}
$$

$$
p_n(x_n) = p_{n0} \exp\left(\frac{eV}{k_B T}\right)
$$

Minority holes are injected into the n-region

Reverse bias, $V < 0$

Electrons and holes are driven away from the junction.

The depletion region becomes wider

$$
n_p(x_p) = n_{p0} \exp\left(\frac{eV}{k_B T}\right)
$$

$$
p_n(x_n) = p_{n0} \exp\left(\frac{eV}{k_B T}\right)
$$

Minority electrons are extracted from the p-region by the electric field Minority holes are extracted from the n-region by the electric field

Minority carrier concentration

$$
x_{bc} - x_{be}
$$

Emitter efficiency

Emitter efficiency
\n
$$
\gamma_e = \frac{I_{En}}{I_{En} + I_{Ep}} = \frac{1}{1 + I_{Ep} / I_{En}}
$$
\n
$$
I_{Ep} = eA_{be}D_p \frac{p_{e0}(e^{eV_{be}/k_BT} - 1)}{x_{eb} - d_e}
$$
\n
$$
I_{En} = -eA_{be}D_n \frac{n_{b0}(e^{eV_{be}/k_BT} - e^{eV_{bc}/k_BT})}{x_{bc} - x_{be}}
$$
\nFor $\gamma_e \sim 1$, $x_{bc} - x_{be} \ll L_b$, $x_{eb} - d_e$ and $n_{b0} \gg p_{e0}$
\nneutral base width
$$
\frac{n_i^2}{N_{Ab}}
$$

Small base width and heavy emitter doping

Base transport factor

$$
B = \frac{I_c}{I_{En}}
$$

ratio of the injected current to the collected current

recombination in the base would reduce the base transport factor

A thin base with low doping results in a base transport factor ~ 1

Early effect

Every effect

\n
$$
I_{E} = I_{ES} \left(e^{eV_{be}/k_{B}T} - 1 \right) - \alpha_{R} I_{CS} \left(e^{eV_{be}/k_{B}T} - 1 \right)
$$
\n
$$
I_{c} = \alpha_{F} I_{ES} \left(e^{eV_{be}/k_{B}T} - 1 \right) - I_{CS} \left(e^{eV_{be}/k_{B}T} - 1 \right)
$$
\n
$$
I_{B} = I_{E} - I_{C}
$$
\n[eA_{be}D_{n}p_{e0} - eA_{be}D_{n}n_{bo}]

\n[eA_{be}D_{n}p_{c0} - eA_{be}D_{n}n_{bo}]

$$
I_{ES} = \left[\frac{eA_{be}D_{p}p_{e0}}{x_{eb} - d_{e}} + \frac{eA_{be}D_{n}n_{b0}}{x_{bc} - x_{be}} \right]
$$

$$
I_{CS} = \left[\frac{eA_{bc}D_{p}p_{c0}}{d_{c} - x_{c}} + \frac{eA_{bc}D_{n}n_{b0}}{x_{bc} - x_{be}} \right]
$$

 I_{ES} and I_{CS} are treated as constants but the depletion widths W_{bc} , W_{be} , W_{c} , , and W_e depend on the voltages. p_{e0} n_{b0} \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow p_{c0} d_e x_e x_{eb} x_{eb} x_{bc} x_c d_c $c \qquad \qquad c$ n_{b0} exp $\left| \frac{eV_{be}}{1-T}\right|$ B eV _{h} $\overline{k_{_{B}}T}$) $\left(\frac{eV_{be}}{k_{B}T}\right)_{\!\!\!\perp}$ $_{b0}$ exp $\frac{eV_{bc}}{L}$ B eV_i n_{b0} exp $\left(\frac{eV_{bc}}{k_B T}\right)$ e_0 exp $\frac{eV_{be}}{L}$ B eV_{p} $p_{\scriptscriptstyle \ell}$ $\left(\frac{eV_{be}}{k_B T}\right)$ $p_{c0} \exp \left(\frac{eV_{bc}}{L} \right)$ B eV _k $\overline{k_{_{B}}T}$) $\left(\frac{eV_{bc}}{k_{B}T}\right)\Bigg|$

Minority carrier concentration

NPN common emitter configuration

Small signal response

Small signal response

Heterojunction bipolar transistors

Semiinsulating GaAs substrate

Heterojunction bipolar transistor

HBT current gain

$$
I_C = \beta I_B
$$

$$
\beta = \frac{\alpha}{1 - \alpha} \approx \frac{n_{B0}}{p_{E0}}
$$
 (npn)

Higher doping in the emitter makes the minority carrier concentration lower in the emitter.

$$
n_{B0} = \frac{n_i^2}{N_A} = \frac{N_C N_V \exp(-E_{gB} / k_B T)}{N_A}
$$

$$
p_{E0} = \frac{n_i^2}{N_D} = \frac{N_C' N_V' \exp(-E_{gE} / k_B T)}{N_D}
$$

If the emitter and the base have different band gaps

$$
\beta = \frac{N_E}{N_B} \frac{N_c N_\nu}{N'_{c} N'_{\nu}} \exp\left(\frac{\Delta E_g}{k_B T}\right) \sim 100000
$$

HBT current gain

A HBT has an emitter bandgap of 1.62 and a base bandgap of 1.42. A BJT has an emitter bandgap of 1.42 and a base bandgap of 1.42. Both have an emitter doping of 10¹⁸ cm⁻³ and a base doping of 10¹⁵cm⁻³.
How much larger is the gain in the HBT? an emitter bandgap of 1.62 and a base bandga
nn emitter bandgap of 1.42 and a base bandgap
nn emitter doping of 10¹⁸ cm⁻³ and a base dopin
larger is the gain in the HBT?
 $\frac{\text{(HBT)}}{\text{(BIT)}} = \exp\left(\frac{\Delta E_g}{k_B T}\right) = \exp\left(\frac{1.62 - 1$

$$
\frac{\beta(\text{HBT})}{\beta(\text{BIT})} = \exp\left(\frac{\Delta E_g}{k_B T}\right) = \exp\left(\frac{1.62 - 1.42}{0.0259}\right) = 2257
$$

Heavy doping narrows the bandgap so in a normal transistor the bandgap is smaller in the emitter.

HBT

Trade off gain for higher speed

Higher base doping lower base resistance reduced Early effect less trouble with punch through base can be made thinner -> faster transistors

Because of higher base doping, a higher collector doping is possible without punchthrough

lower collector resistance

HBT current gain

band discontinuity reduces emitter efficiency Graded layer emitter and base improve performance

Heterojunction bipolar transistors

Fastest InP/InGaAs HBT's have an f_T of 710 GHz.

Higher doping in the base allows for a thinner base without punch through and lower base resistance and thus higher frequency operation

Microwave engineering

- Electronics: $L << \lambda$ $f < \sim 10$ GHz
- Microwave: $\lambda < L$ 10 GHz < f < 1 THz
- TeraHertz: $\lambda \ll L$ 1 THz $\leq f \leq 100$ THz

Optics: $\lambda \ll L$ 100 THz

Thyristors

Thyristors

Used for switching high currents or voltages

Latch-up

Both BJT's conduct, creating a low resistance path between V_{dd} and GND. The product of the gains of the two transistors in the feedback loop, is greater than one. The result of latchup is at the minimum a circuit malfunction, and in the worst case, the destruction of the device.

http://www.ece.drexel.edu/courses/ECE-E431/latch-up/latch-up.html

Can you operate like a BJT?

Subthreshold current

If the p-concentration in the channel is low, electrons emitted into the channel by the forward biased junction diffuse across the channel without recombining.

Subthreshold current – depletion approximation

$$
x_p = -\frac{\epsilon_s}{\epsilon_{\text{ox}}}t_{\text{ox}} + \sqrt{\left(\frac{\epsilon_s}{\epsilon_{\text{ox}}}t_{\text{ox}}\right)^2 + \frac{2\epsilon_s}{eN_A}(V_g-V_{fb})}
$$

$$
n(x)=\left\{\begin{array}{ll} \frac{n_i^2}{N_A}\mathrm{exp}\Big(\frac{e^2N_A(x_p-x)^2}{2\epsilon_sk_BT}\Big) & \textrm{for } 0x_p, \end{array}\right.
$$

$$
n(x)=\frac{n_i^2}{N_A}\mathrm{exp}\Bigg(\frac{e^2N_A(x_p-x)^2}{2\epsilon_s k_B T}\Bigg)\\n(x)\approx\frac{n_i^2}{N_A}\mathrm{exp}\Bigg(\frac{e^2N_A(x_p^2-2x_px)}{2\epsilon_s k_B T}\Bigg)\\n_{2d}=\frac{n_i^2}{N_A}\mathrm{exp}\Bigg(\frac{e^2N_Ax_p^2}{2\epsilon_s k_B T}\Bigg)\frac{\epsilon_s k_B T}{e^2N_Ax_p}
$$

 V_g [V]

Subthreshold slope: 70-100 mV/decade

Interdigitated contacts in power transistors

IGBT - Insulated Gate Bipolar Transistor

An IGBT is a combination of an insulated gate FET and a bipolar transistor. It is primarily used for switching high power loads

Used to switch large currents (in electric cars or trains). Like a thyristor for high voltages.

http://lampx.tugraz.at/~hadley/psd/L13/igbt.html

Antimony (Sb) has a low vapor pressure and won't evaporate during the subsequent CVD step

Epi-growth

Collector Contact

Guard ring

p-well

BiCMOS

Only one additional step to CMOS is needed for BiCMOS

Bipolar junction transistors: high speed high gain low output impedance good for analog amplifiers

CMOS high impedance low power logic

See: http://www.iue.tuwien.ac.at/phd/puchner/node48_app.html

Emission Microscope

Forward biased diodes emit light. (BJT) Defects often emit light.

http://www.muanalysis.com/techniques/emissionmicroscopy-emmi

When does it emit light?

Thyristor Bipolar junction transistors **MOSFET** JFET Si diode

Phototransistor

What happens to all devices when you shine light on them? What if you make the devices out of direct band gap materials. Do they emit?