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1. Introduction

Photonic crystals are composed of periodic, dielectric structures that affect the propaga-
tion of electromagnetic waves. As in forbidden electronic energy bands in semiconduc-
tors there are certain frequencies for which electromagnetic waves can not travel through
those crystals. These disallowed frequency regions are called photonic band gaps. The
physical basis for this phenomenon is diffraction. In nature photonic crystals appear for
example in structural colouration of butterfly wings or in algae as protection against
ultraviolet radiation. There’s a broad range of technical applications for artificially pro-
duced photonic crystals, for example in thin-film optics, photonic-crystal fibers and in
future maybe even in optical computers.

There are several methods to calculate the dispersion relation and therewith the range
of the band gaps. In this document we will apply the plane wave expansion method on
a specific photonic crystal: a two-dimensional, hexagonal arrangement of air holes in a
dielectric material. By doing so we will derive the dispersion relation and the density
of states and thus the photonic band gaps. From the density of states finally we will be
able to determine some thermodynamic properties.
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2. Properties of the Considered Photonic Crystal

2.1. Dielectric Properties and Structure in Real Space

~a1

~a2

ε0

εM

Figure 1: Structure of the photonic
crystal in real space.

The photonic crystal that we consider is
a hexagonal arrangement of air-holes in a
dielectric material with a dielectric con-
stant εM = 13. We’ll approximate the
phase-velocity of the electromagnetic waves
in air as the speed of light and we’ll take

into account that
c2M
c2

= 1
εM

. The ra-
tio of the radius of the holes R to the
lattice constant a = 0.5 µm should be
R
a

= 0.48. Thus every plot in this doc-
ument will be calculated with those prop-
erties. The primitive basis vectors for a
hexagonal lattice in real space can be written
as:

~a1 = a

(
1
0

)
(1a) ~a2 = a

( 1
2√
3

2

)
(1b)

2.2. Reciprocal Lattice Vectors and Brillouin zone

~b1Brillouin zone

~b2

Γ

M K

Figure 2: First Brillouin zone and high
symmetric directions.

If we assume that the photonic crystal is dis-
tributed over an infinitely big plane, then due
to its periodicity a Fourier transformation of
the physical properties is possible. This ap-
proach is the basis for the plane wave expan-
sion method in which we additionally assume
that the propagating electromagnetic waves
are plane waves. For the Fourier transforma-
tion thus we will need the reciprocal lattice
vectors:

~G = m~b1 + n~b2, m, n ∈ Z (2)

Those are constructed by the reciprocal basis
vectors ~b1 and ~b2 which result as:

~b1 = 2π
~a2 × ~ez

~a1(~a2 × ~ez)
=

2π

a

(
1
− 1√

3

)
(3a)

~b2 = 2π
~ez × ~a1

~a1(~a2 × ~ez)
=

2π

a

(
0
2√
3

)
(3b)
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With those basis vectors the Brillouin zone can be constructed – see figure 2. We will
need the wave vectors ~k inside this zone for the calculation of the density of states. For
the depiction of the dispersion relation just certain directions of high symmetry (ΓM,
MK and KΓ) will be used.

3. Application of the Plane Wave Expansion Method

3.1. Starting from Maxwell’s Equations

The propagation of electromagnetic waves can be described by Maxwell’s equations.
From those we will derive a set of equations, whose solutions can be approximated by
the plane wave expansion method.

Due to the dielectric material two of Maxwell’s equations – namely Faraday’s and
Ampère’s law – can be written as:

~∇× ~E = −∂
~B

∂t
(4a) ~∇× ~B = µ0ε(~r)

∂ ~E

∂t
(4b)

For two dimensional problems the dispersion relation contains two types of solutions:
transversal magnetic (TM) and electric (TE) modes. In TM modes the magnetic field of
the propagating electromagnetic wave lies completely in the considered two-dimensional
plane, whereat the electric field is perpendicular to that plane. For the TE modes the
magnetic field is perpendicular to the plane. With the assumption of plane waves latter
can be expressed as:

~ETM = ~ezE(~r)ei(
~k·~r−ωt) (5a) ~BTE = ~ezB(~r)ei(

~k·~r−ωt) (5b)

Because the time derivation then yields to a factor −iω, equation (4b) can be substituted
into (4a) and vice-versa, what gives with µ0ε(~r) = c(~r)−2:

c(~r)2~∇× ~∇× ~ETM = ω2 ~ETM (6a) ~∇× (c(~r)2~∇× ~BTE) = ω2 ~BTE (6b)

On the right hand side of latter equations just the z-component is non-zero. Hence just
the last line will contain ω and can be used for the calculation of the dispersion relation.
After writing out the differential operators for equations (6a) and (6b) the line that
contains ω can be written as:

c(~r)2
[
− ∂2

∂x2
− ∂2

∂y2

]
E(~r)ei(

~k·~r) = ω2 ~E(~r)ei(
~k·~r) (7a)[

− ∂c(~r)2

∂x

∂

∂y
− ∂c(~r)2

∂y

∂

∂x
− c(~r)2[

∂2

∂x2
− ∂2

∂y2
]
]
B(~r)ei(

~k·~r) = ω2 ~B(~r)ei(
~k·~r) (7b)
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3.2. Derivation of the Central Equations by Fourier Expansion

Due to the assumed periodic arrangement of the holes over an infinitely big two-dimensional
plane it can be assumed that the phase velocity and the components of the electric and
magnetic field can be expanded as a Fourier series:

c(~r)2 =
∑
~G

c2
~G
ei(

~G·~r) (8a) E(~r) =
∑
~G

E ~Ge
i( ~G·~r) (8b) B(~r) =

∑
~G

B ~Ge
i( ~G·~r) (8c)

We already assumed that the electromagnetic field propagates through the crystal in
form of a plane wave – see equation (5a) and (5b). The reciprocal lattice vector ~G is
determined by two indices m and n and can be expressed in certain ways:

~G = ~Gmn = m~b1 + n~b2 == Gmn
x ~ex +Gmn

y ~ey (9)

For the Fourier expansion of c(~r)2 in the following the indices l and m will be used – so
c2
~G

= c2
lm. The Fourier expansions of the electric and magnetic field will be expressed by

indices n and o on the left and p and q on the right hand side of equations. Then the
differential equations (7a) and (7b) can be transformed into algebraic equations:

∑
lm

∑
no

c2
lme

i ~Glm·~r
[
− ∂2

∂x2
− ∂2

∂y2

]
︸ ︷︷ ︸

=(Gnox +kx)2+(Gnoy +ky)2

Enoe
i[( ~Gno+~k)·~r] =

∑
pq

ω2Epqe
i[( ~Gpq+~k)·~r] (10a)

∑
lm

∑
no

c2
lm

=ei
~Glm·~r[Glmx (Gnox +kx)+Glmy (Gnoy +ky)+(Gnox +kx)2+(Gnoy +ky)2]︷ ︸︸ ︷[
− ∂ei

~Glm·~r

∂x

∂

∂y
− ∂ei

~Glm·~r

∂y

∂

∂x
− ei ~Glm·~r[ ∂

2

∂x2
− ∂2

∂y2
]
]
Bnoe

i[( ~Gno+~k)·~r] =

=
∑
pq

ω2Bpqe
i[( ~Gpq+~k)·~r] (10b)

By comparing the arguments of the exponential functions on the right and left we find
that l + n = p and m + o = q. With those index transformations we can compare the
coefficients of the exponential functions and get the following eigenvalue problems:∑

lm

[
(G(p−l)(q−m)

x + kx)
2 + (G(p−l)(q−m)

y + ky)
2
]
c2
lmE(p−l)(q−m) = ω2Epq (11a)

∑
lm

[
Glm
x (G(p−l)(q−m)

x + kx) +Glm
y (G(p−l)(q−m)

y + ky)+

+ (G(p−l)(q−m)
x + kx)

2 + (G(p−l)(q−m)
y + ky)

2
]
c2
lmB(p−l)(q−m) = ω2Bpq (11b)

Those equations that are called the central equation can be solved numerically, if we
restrict the number of reciprocal lattice vectors ~G. So we wave to set an upper bound
Opq = sup{p+ q} for the indizes p and q.

4



For demonstration of the numerical calculations we set Opq = 1. In the algebraic equa-
tions (11a) and (11b) we can substitute the square brackets as:

Ξpq
lm =

[
(G(p−l)(q−m)

x + kx)
2 + ...

]
(12)

Then (11a) and (11b) lead to linear systems of equations that can be expressed similarly
by the matrix:

c2
00Ξ01

00 c2
1̄1Ξ01

1̄1 c2
01Ξ01

01 c2
11Ξ01

11 c2
02Ξ01

02

c2
11̄Ξ10

11̄ c2
00Ξ10

00 c2
10Ξ10

10 c2
20Ξ10

20 c2
11Ξ10

11

c2
01̄Ξ01

01̄ c2
1̄0Ξ01

1̄0 c2
00Ξ00

00 c2
10Ξ01

10 c2
01Ξ01

01

c2
1̄1̄Ξ1̄0

1̄1̄ c2
2̄0Ξ1̄0

2̄0 c2
1̄0Ξ1̄0

1̄0 c2
00Ξ1̄0

00 c2
1̄1Ξ1̄0

1̄1

c2
02̄Ξ01̄

02̄ c2
1̄1Ξ01̄

1̄1 c2
01̄Ξ01̄

01̄ c2
11̄Ξ01̄

11̄ c2
00Ξ01̄

00



A01

A10

A00

A1̄0

A01̄

 = ω2


A01

A10

A00

A1̄0

A01̄

 (13)

Because we set Opq = 1, in the following we can neglect all matrix elements with index
pairs 02, 02̄, 11, ... :

c2
00Ξ01

00 0 c2
01Ξ01

01 0 0
0 c2

00Ξ10
00 c2

10Ξ10
10 0 0

c2
01̄Ξ01

01̄ c2
1̄0Ξ01

1̄0 c2
00Ξ00

00 c2
10Ξ01

10 c2
01Ξ01

01

0 0 c2
1̄0Ξ1̄0

1̄0 c2
00Ξ1̄0

00 0
0 0 c2

01̄Ξ01̄
01̄ 0 c2

00Ξ01̄
00



A01

A10

A00

A1̄0

A01̄

 = ω2


A01

A10

A00

A1̄0

A01̄

 (14)

If we know the Fourier expansion coefficients c2
lm, we can solve the eigenvalue problem

(14) for the TM and TE modes. A formula for those is derived in the following chapter.

3.3. Fourier Coefficients of the Phase Velocity

As already mentioned, we can expand c2(~r) in a Fourier-series – see equation (8a) – with
the coefficients c2

lm, that can be calculated in the following way:

c2
lm =

1

Acell

∫
cell

c(~r)2e−i(l
~b1+m~b2)·~rd2r (15)

When we consider that

c(~r)2 =

{
c2
M , r ≥ R ... phase velocity in dielectric material

c2, r < R ... phase velocity in vacuum
, (16)

where R is the radius of the holes, we can split up the integral in equation (11) and we
get:

c2
lm =

c2
M

Acell

∫
cell

e−i(l
~b1+m~b2)·~rd2r +

c2 − c2
M

Acell

∫
hole

e−i(l
~b1+m~b2)·~rd2r (17)

If l = m = 0 latter equation gives:

c2
lm =

c2
M

Acell

∫
cell

d2r +
c2
V − c2

M

Acell

∫
hole

d2r = c2
M + (c2 − c2

M)
Ahole
Acell

(18)

5



For l 6= 0 or m 6= 0 we change the second term to polar coordinates due to the symmetry
of the holes:

c2
lm =

c2
M

Acell

a∫
0

√
3

2
a∫

0

e−i(l
~b1+m~b2)·~rdy dx+

c2 − c2
M

Acell

π∫
−π

R∫
0

e−i(l
~b1+m~b2)·~rdr dϕ (19)

When we integrate the first term over the rectangular unit cell in real space, we find
that this term vanishes:

a∫
0

√
3

2
a∫

0

e−i[l
~b1+m~b2]·~rdy dx =

a∫
0

√
3

2
a∫

0

e
−i 2π

a

[
l
( 1
− 1√

3

)
+m
( 0

2√
3

)]
·
(
x
y

)
dy dx =

=

a∫
0

e−i
2π
a
lx dx

︸ ︷︷ ︸
∝e−i2πl−e−0=1−1=0

·

√
3

2
a∫

0

e
−i 2π

a
(2m−l)y√

3) dy = 0 (20)

When we use the relationship (l~b1 +m~b2) · ~r = ~Glm · ~r = Glmr cosϕ, we obtain a Bessel
function of the first kind for the remaining integral:

c2
lm = 0+

c2 − c2
M

Acell

π∫
−π

R∫
0

e

−iGlmr︸ ︷︷ ︸
=x

cosϕ

r dr dϕ =
c2 − c2

M

AcellG2
lm

GlmR∫
0

u

π∫
−π

e−iu cosϕ dϕ

︸ ︷︷ ︸
=
0(u)
2π

... Bessel function

du =

=
c2 − c2

M

AcellG2
lm

2π

GlmR∫
0

u 0(u) du =
c2 − c2

M

Acell
2π

R

Glm

1(GlmR) (21)

In the last step we used the following integral identity for Bessel functions of the first
kind:

U∫
0

u0(u)du = U1(U) (22)

So finally we get:

c2
lm

c2
= δl,0δm,0

[c2
M

c2
+ (1− c2

M

c2
)
Ahole
Acell

]
+ Θ(|l +m| > 0)

[(1− c2M
c2

)

Acell

2πR

Glm

1(GlmR)
]
, (23)

where δA,B is the Kronecker delta and Θ(L) is the Heaviside step function.
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4. Results

With a Matlab script – see appendix A – the central equations (11a) and (11b) were

solved numerically for a discrete set of wave vectors ~k inside the first Brillouin zone of
the two-dimensional, hexagonal photonic crystal. With the solutions it was possible to
calculate the dispersion relation, the density of states and thermodynamic properties.

4.1. Dispersion Relation and Density of States

In the dispersion relation the solutions for ω of the central equations (11a) and (11b) are
usually plotted along directions of high symmetry (ΓM, MK and KΓ). In the density
of states the number of solutions inside the first Brillouin zone and a frequency interval
[ω, ω + ∆ω] is counted. The resulting dispersion relation and density of states for the
considered two-dimensional, hexagonal photonic crystal are depicted in figure 5.

Γ M K Γ
0

0.5

1

1.5

2

2.5

3

3.5

TM

TE

directions in k-space

fr
eq

u
en

cy
ω
/

[1
01

5
r
a
d
s

]

0 0.01 0.02 0.03 0.04

density of states D(ω) / [ s
m2 ]

Figure 3: Dispersion relation (left) and density of states (right) for a hexagonal arrange-
ment of air holes in a dielectric material. The calculations were done by the
plane wave expansion method in Matlab – see code in appendix A. The red
lines are solutions that belong to the transversal electric modes (TE), whereat
the blue lines belong to the transversal magnetic modes (TM).

In those plots a photonic band gap occurs in the interval ω a
2π c
∈ [0.46, 0.52] where no

solutions exist. In this frequency range the electromagnetic waves are reflected for any
direction of arrival.

7



4.2. Thermodynamic Properties

With the density of states D(ω) it was possible to calculate thermodynamic properties
by equations (24a) - (24e).

Energy Spectral Density: u(ω) = ~ω ·D(ω) · 1

exp( ~ω
kBT

)− 1
(24a)

Internal energy density: u(T ) =

∫ ∞
0

u(ω) dω (24b)

Specific heat: cV (T ) =
∂u(T )

∂T

∣∣∣
V=const.

(24c)

Helmholtz free energy: f(T ) = kBT

∫ ∞
0

D(ω) · ln
(

1− exp(− ~ω
kBT

)
)
dω (24d)

Entropy density s(T ) = −∂f(T )

∂T

∣∣∣
N,V=const.

(24e)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

1

2

3

4

5

6

7

8

frequency ω / [1015 rad
s

]

u
(ω

)
/

[1
0−

2
3
J
s

m
2
]

T = 2500 K
T = 2000 K
T = 1500 K
T = 1000 K
T = 500 K

Figure 4: Energy spectral density u(ω) for a set of temperatures.
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Figure 5: Thermodynamic properties: internal energy u(T ), heat capacity cV (T ),
Helmholtz free energy f(T ) and entropy density s(T ).
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A. Matlab Code

1 %% This program c a l c u l a t e s the d i s p e r s i on r e l a t i o n and the
den s i t y o f s t a t e s wi th the p lane wave expansion method f o r a
hexagona l arrangement o f a i r ho l e s in a d i e l e c t r i c mate r ia l
(2D photonic c r y s t a l ) .

2 k B = 1.380658∗10ˆ−23; h bar = 1.05457266∗10ˆ−34; c =
2.99792458∗10ˆ8 ;

3 %% k−space in un i t s o f 2∗ p i /a :
4 N gm = 30 ; N mk = f loor (N gm/sqrt (3 ) ) ; % number o f wave v e c t o r s

f o r d i f f e r e n t d i r e c t i o n s in k−space
5 D gm = (2/ sqrt (3 ) ) / 2 ; % di s t ance from Gamma to M in k−space (

h a l f o f r e c i p r o c a l l a t t i c e v e c t o r b 2 )
6 D mk = D gm/sqrt (3 ) ; % di s t ance from M to K
7 [ k xx , k yy ] = meshgrid (D mk∗(−2∗N mk:2∗N mk) /N mk , D gm∗(−N gm :

N gm) /N gm) ; % those v a r i a b l e s w i l l g e t the k−s t a t e s i n s i d e
o f the Wigner−S e i t z c e l l ( hexagon )

8 for i =1:N mk % in t h i s loop the hexagon i s ” cut ” in t o a
r e c t an g l e

9 j=f loor (N gm−N gm/N mk∗ i +2) ;
10 k xx ( 1 : j , 4∗N mk−i +2)=NaN; k yy ( 1 : j , 4∗N mk−i +2)=NaN;
11 k xx ( 1 : j , i )=NaN; k yy ( 1 : j , i )=NaN;
12 k xx (N gm+j : end , N mk−i +1)=NaN; k yy (N gm+j : end , N mk−i +1)=

NaN;
13 k xx (N gm+j : end , 3∗N mk+i +1)=NaN; k yy (N gm+j : end , 3∗N mk+i

+1)=NaN;
14 end ;
15 k xx = k xx (˜ isnan ( k xx ( : ) ) ) ; k yy = k yy (˜ isnan ( k yy ( : ) ) ) ; %

di spo se NaN va lu e s
16 ind gm = find ( k xx==0) ; ind gm ( 1 : ce i l ( numel ( ind gm ) /2)−1)

= [ ] ; % Gamma −> M
17 ind mk = find ( k yy==D gm) ; ind mk ( 1 : ce i l ( numel ( ind mk ) /2)−1)

= [ ] ; % M −> K
18 ind kg = find ( k yy==0) ; ind kg ( ce i l ( numel ( ind kg ) /2) +1:end)

= [ ] ; % K −> Gamma
19 ind = [ ind gm ; ind mk ; ind kg ] ; % ind i c e s f o r d i s p e r s i on

r e l a t i o n p l o t
20 N disp = numel ( ind ) ; N dos = numel ( k xx ) ; % t o t a l number o f

wave v e c t o r s f o r the d i s p e r s i on r e l a t i o n and the den s i t y o f
s t a t e s

21 %% prop e r t i e s o f the problem :
22 c s q r a t = 1/13 ; % ra t i o o f the quadra t i c phase v e l o c i t i e s (

ho l e /mate r i a l )
23 O pq = 25 ; % order o f r e c i p r o c a l l a t t i c e v e c t o r s (G=m∗b1+n∗b2

=> ord G = m max + n max )
24 N pq = (O pq−1)∗O pq/2 + ( O pq+1)∗(O pq+2) /2 ; % number o f

r e c i p r o c a l l a t t i c e v e c t o r s ( a r i t hme t i c s e r i e s )
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25 dim = 2∗N pq−1; % dimension o f the matrix from the
Eigenwertproblem

26 a = 500∗10ˆ−9; A c e l l = aˆ2∗ sqrt (3 ) /2 ; % di s t ance between the
ho l e s and area o f the c e l l

27 R = 0.48∗ a ; A hole = Rˆ2∗pi ; % rad ius and area o f the ho l e s
28 beta TM=zeros (dim , dim) ; beta TE=zeros (dim , dim) ; % fa c t o r s due

to d i f f e r e n t i a l o p e ra t i o s
29 vec TM=zeros ( N dos , dim) ; vec TE=zeros ( N dos , dim) ; %

e i g en v e c t o r s f o r t r a n s v e r s a l magnetic and t ransv . e l e c t r i c
modes

30 %% index t rans format ion due to c o e f f i c i e n t comparison
31 u=0; t ic
32 p = zeros (dim , 1 ) ; q = zeros (dim , 1 ) ; % ind i c e s G tha t b e l ong s to

the e l e c t r i c or magnetic f i e l d
33 for i =0:O pq
34 for j =0: i
35 i f ( i >0) , t =(( i +1)∗ i )/2+1+j ; else t =1; end ;
36 p( t )=j ; q ( t )=i−j ;
37 i f ( j>0 && j<i )
38 p( N pq−u)=−p( t ) ; q ( N pq−u)=q ( t ) ; u=u+1;
39 end ;
40 end ;
41 end ;
42 p = [ fl ipud (p ( 2 : N pq ) ) ;−p ( 1 : N pq ) ] ; q = [ fl ipud ( q ( 2 : N pq ) ) ;−q

( 1 : N pq ) ] ;
43 [ nn1 , nn2 ] = meshgrid (p) ; [ oo1 , oo2 ] = meshgrid ( q ) ;
44 l = nn2−nn1 ; m = oo2−oo1 ;
45 %% s e t t i n g up and s o l v i n g the system of a l g e b r a i c equa t i ons (

Eigenwertproblem ) − c a l c u l a t i n g the d i s p e r s i on r e l a t i o n
46 G = 2∗pi/a∗sqrt ( l .ˆ2+(2∗m−l ) . ˆ2/3 ) ;
47 c sq G = (1− c s q r a t ) / A c e l l ∗2∗pi∗R. /G.∗ b e s s e l j (1 ,G∗R) ; %

expansion c o e f f i c i e n t s f o r the speed o f l i g h t
48 c sq G ( l==0 & m==0) = c s q r a t +(1− c s q r a t )∗A hole / A c e l l ; %

diagona l e lements o f the expansion c o e f f i c i e n t s
49 G x = nn2 − l ; G y = (2∗ ( oo2−m)−(nn2−l ) ) /sqrt (3 ) ; % x− and y−

components o f the r e c i p r o c a l l a t t i c e v e c t o r s corresponding
to the E− or B− f i e l d

50 wb = waitbar ( 0 , [ ’ working . . . ’ ,num2str( ce i l (0/ N dos ∗100) ) , ’ %
done ’ ] ) ;

51 pool = 10 ;
52 matlabpool ( pool )
53 for i =1: pool : numel ( k xx )
54 vec tm = zeros ( pool , dim) ; v e c t e = zeros ( pool , dim) ;
55 pa r f o r j =0: pool−1
56 p = i + j ;
57 i f p<=numel ( k xx )
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58 k x = k xx (p) ; k y = k yy (p) ; % x− and y−components
f o r the d i f f e r e n t d i r e c t i o n s in k−space

59 beta TM = (G x+k x ) .ˆ2+(G y+k y ) . ˆ 2 ; % fa c t o r due
to d i f f e r e n t i a l opera tor s from ro t ( ro t (E) )=wˆ2∗E
, where E x = E y = 0

60 beta TE = l . ∗ ( G x+k x ) + (2∗m−l ) /sqrt (3 ) . ∗ ( G y+k y )
+ beta TM ; % fa c t o r due to d i f f e r e n t i a l
opera tor s from ro t ( cˆ2∗ ro t (B) )=wˆ2∗B, where B x
= B y = 0

61 ewp TM = c sq G .∗ beta TM ; % s e t t i n g up the
Eigenwertprob lems f o r the TM and TE modes

62 ewp TE = c sq G .∗ beta TE ; % expansion c o e f f i c i e n t s
t imes the f a c t o r from the d i f f e r e n t i a l opera tor s

63 %so l v i n g the TM and TE e i g enva l u e problems
64 vec tm ( j +1 , : ) = sort ( sqrt ( eig (ewp TM ( : , : ) ) ) ) ;
65 v e c t e ( j +1 , : ) = sort ( sqrt ( eig (ewp TE ( : , : ) ) ) ) ;
66 end ;
67 end ;
68 vec TM( i : i+pool −1 , : ) = vec tm ; vec TE ( i : i+pool −1 , : ) =

v e c t e ;
69 t = toc ; waitbar ( i /N dos , wb , [ ’ Working ’ ,num2str( f loor ( t

/60ˆ2) ) , ’ h , ’ . . .
70 ,num2str( f loor ( t /60) ) , ’ min and ’ ,num2str(rem( t , 6 0 ) ) , ’

s e c . . . ’ ,num2str( ce i l ( i /N dos ∗100) ) , ’ % done ! ’ ] ) ;
71 end ;
72 matlabpool close
73 vec TM( N dos+1:end , : ) = [ ] ; vec TE ( N dos+1:end , : ) = [ ] ;
74 bands = 1 : 9 ; % energy bands o f i n t e r e s t
75 d i s p e r s i o n r e l a t i o n = [ vec TM( ind , bands ) , vec TE ( ind , bands ) ]∗ ( 2∗

pi∗c ) /a ;
76 %% ca l c u l a t i o n o f the d en s i t y o f s t a t e s
77 n w = 100 ; [ dos , w ] = hist ( [ vec TE ( vec TE<1) ; vec TM(vec TM<1)

]∗ ( 2∗ pi∗c ) /a , n w ) ;
78 dos=dos /( w (2)−w (1) ) /N dos/ A c e l l ; % normal ize d en s i t y o f

s t a t e s to [ s /mˆ2]
79 %% ca l c u l a t i o n o f the thermodynamic p r o p e r t i e s :
80 T max = 2500 ; n T = 126 ; T = ce i l ( linspace (0 ,T max , n T ) ) ;
81 T = repmat (T , n w , 1 ) ;
82 w = repmat (w ’ , 1 , n T ) ;
83 b o s e e i n s t e i n = 1 . / ( exp( h bar∗w/k B . /T)−1) ;
84 DOS = repmat ( dos ’ , 1 , n T ) ;
85 u s p e c t r a l = h bar∗w.∗ b o s e e i n s t e i n .∗DOS;
86 du spect ra l dT = −(h bar∗w. /T) .ˆ2/ k B .∗DOS.∗exp( h bar∗w/k B . /T)

.∗ b o s e e i n s t e i n . ˆ 2 ;
87 u i n t e r n a l = trapz (w( : , 1 ) , u s p e c t r a l ) ;
88 c V = −trapz (w( : , 1 ) , du spect ra l dT ) ;
89 f = trapz (w( : , 1 ) , k B∗T.∗DOS.∗ log(1−exp(−h bar∗w/k B . /T) ) ) ;
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90 s = −f .∗T − trapz (w( : , 1 ) ,DOS./(1−exp(−h bar∗w/k B . /T) ) .∗ h bar
.∗w. /T) ;

91 close (wb) ;
92 %% wr i t i n g the r e s u l t s to f i l e s
93 fname = ’ 2 D h e x d i s p e r s i o n i n f o . txt ’ ;
94 dlmwrite ( fname , [ num2str( numel ( ind gm ) ) , ’ ’ ,num2str( numel (

ind gm )+numel ( ind mk ) ) , ’ ’ ,num2str( N disp ) ] , ’ d e l i m i t e r ’ , ’ ’ ) ;
95 fname = ’ 2 Dhex dispersion TM . txt ’ ; dlmwrite ( fname , [ ’ k ’ , sprintf

( ’ TM%i ’ , bands ) ] , ’ d e l i m i t e r ’ , ’ ’ ) ;
96 dlmwrite ( fname , [ ( 1 : N disp ) ’ , vec TM( ind , bands ) ∗(2∗pi∗c ) /a

∗10ˆ−15] , ’−append ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
97 fname = ’ 2 Dhex dispers ion TE . txt ’ ; dlmwrite ( fname , [ ’ k ’ , sprintf

( ’ TE%i ’ , bands ) ] , ’ d e l i m i t e r ’ , ’ ’ ) ;
98 dlmwrite ( fname , [ ( 1 : N disp ) ’ , vec TE ( ind , bands ) ∗(2∗pi∗c ) /a

∗10ˆ−15] , ’−append ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
99 fname = ’ 2 D h e x d e n s i t y o f s t a t e s . txt ’ ; dlmwrite ( fname , ’w dos ’ ,

’ d e l i m i t e r ’ , ’ ’ ) ;
100 dlmwrite ( fname , [ 0 , 0 ; w ’∗10ˆ−15 , dos ’ ; w (end) ∗10ˆ−15 ,0] , ’−

append ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
101 fname = ’ 2 Dhex spe c t r a l en e r gy den s i t y . txt ’ ; ind T=mod(T ,500 )

==0;
102 dlmwrite ( fname , [ ’w ’ , sprintf ( ’ T%i ’ , T ( ind T ) ) ] , ’ d e l i m i t e r ’ , ’ ’ )

;
103 dlmwrite ( fname , [ zeros (1 ,sum( ind T )+1) ; w ’∗10ˆ−15 , u s p e c t r a l ( : ,

ind T ) ∗10ˆ23 ] , ’−append ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
104 fname = ’ 2Dhex thermo prop . txt ’ ; dlmwrite ( fname , ’T u i n t c V f

s ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
105 dlmwrite ( fname , [ T ’ , u i n t e r n a l ’∗10ˆ8 , c V ’∗10ˆ11 , f ’∗10ˆ8 , s

’∗1 0 ˆ 5 ] , ’−append ’ , ’ d e l i m i t e r ’ , ’ ’ ) ;
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