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1. Introduction

Photonic crystals are composed of periodic, dielectric structures that affect the propaga-
tion of electromagnetic waves. As in forbidden electronic energy bands in semiconduc-
tors there are certain frequencies for which electromagnetic waves can not travel through
those crystals. These disallowed frequency regions are called photonic band gaps. The
physical basis for this phenomenon is diffraction. In nature photonic crystals appear for
example in structural colouration of butterfly wings or in algae as protection against
ultraviolet radiation. There’s a broad range of technical applications for artificially pro-
duced photonic crystals, for example in thin-film optics, photonic-crystal fibers and in
future maybe even in optical computers.

There are several methods to calculate the dispersion relation and therewith the range
of the band gaps. In this document we will apply the plane wave expansion method on
a specific photonic crystal: a two-dimensional, hexagonal arrangement of air holes in a
dielectric material. By doing so we will derive the dispersion relation and the density
of states and thus the photonic band gaps. From the density of states finally we will be
able to determine some thermodynamic properties.



2. Properties of the Considered Photonic Crystal

2.1. Dielectric Properties and Structure in Real Space

The photonic crystal that we consider is
a hexagonal arrangement of air-holes in a
dielectric material with a dielectric con-
stant ¢, = 13.  We'll approximate the €o
phase-velocity of the electromagnetic waves
in air as the speed of light and we’ll take =

€N

into account that Cj% = $ The ra-
tio of the radius of the holes R to the
lattice constant a = 0.5 pm should be N
£ — 0.48. Thus every plot in this doc-

ument will be calculated with those prop-

erties.  The primitive basis vectors for a Figure 1: Structure of the photonic
hexagonal lattice in real space can be written crystal in real space.

i =a (é) (1a) i =a (ég) (1b)

2.2. Reciprocal Lattice Vectors and Brillouin zone

If we assume that the photonic crystal is dis-
tributed over an infinitely big plane, then due
to its periodicity a Fourier transformation of
the physical properties is possible. This ap-
proach is the basis for the plane wave expan-
sion method in which we additionally assume
that the propagating electromagnetic waves
are plane waves. For the Fourier transforma-
tion thus we will need the reciprocal lattice
vectors:

G = mb; + ngg, m,n € 7 (2)

Brillouin zone

Those are constructed by the reciprocal basis
vectors by and by, which result as:
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L Figure 2: First Brillouin zone and high
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With those basis vectors the Brillouin zone can be constructed — see figure 2l We will
need the wave vectors k inside this zone for the calculation of the density of states. For
the depiction of the dispersion relation just certain directions of high symmetry (I'M,

MK and KT') will be used.

3. Application of the Plane Wave Expansion Method

3.1. Starting from Maxwell’s Equations

The propagation of electromagnetic waves can be described by Maxwell’s equations.
From those we will derive a set of equations, whose solutions can be approximated by
the plane wave expansion method.

Due to the dielectric material two of Maxwell’s equations — namely Faraday’s and
Ampere’s law — can be written as:
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For two dimensional problems the dispersion relation contains two types of solutions:
transversal magnetic (TM) and electric (TE) modes. In TM modes the magnetic field of
the propagating electromagnetic wave lies completely in the considered two-dimensional
plane, whereat the electric field is perpendicular to that plane. For the TE modes the
magnetic field is perpendicular to the plane. With the assumption of plane waves latter

can be expressed as:

Ery = 6B+ (5a) Brp = &.B(7)eF™=D  (5b)

Because the time derivation then yields to a factor —iw, equation (4b)) can be substituted
into and vice-versa, what gives with poe(7) = c(F) ™%

o(P)?V x V x Ery = w?Ery (6a) V x (¢(7)?V x Brg) =w?Brp  (6b)

On the right hand side of latter equations just the z-component is non-zero. Hence just
the last line will contain w and can be used for the calculation of the dispersion relation.
After writing out the differential operators for equations (6a) and (6b) the line that
contains w can be written as:

2 0 0 N i(kF) 2 7 = i(k-7)
c(r)?| — ok _8y2] E(r)e = w E(re (7a)
oc(¥)? 0 Oc(r)? O e 02 0? (R (R
- (3(;) o ;;) o — el —ay21]3(f)e E0 — B[ ®D (b



3.2. Derivation of the Central Equations by Fourier Expansion

Due to the assumed periodic arrangement of the holes over an infinitely big two-dimensional
plane it can be assumed that the phase velocity and the components of the electric and
magnetic field can be expanded as a Fourier series:

o(7)? = Zc G (8a)  E(7) =Y Ege®? (8b)  B(7) =Y Bge'®" (c)
G G

We already assumed that the electrom anetlc ﬁeld propagates through the crystal in
form of a plane wave — see equation and The reciprocal lattice vector G is
determined by two indices m and n and can be expressed in certain ways:

G = Gopn = mby + nby == GT"8, + G™"€, (9)
For the Fourier expansion of ¢(7)? in the following the indices [ and m will be used — so
cé = ¢} . The Fourier expansions of the electric and magnetic field will be expressed by

indices n and o on the left and p and ¢ on the right hand side of equations. Then the
differential equations and can be transformed into algebraic equations:
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By comparing the arguments of the exponential functions on the right and left we find
that [ +n = p and m + o = ¢. With those index transformations we can compare the
coefficients of the exponential functions and get the following eigenvalue problems:

Z [(Ggg’*”(q*m)  Ep)? + (G ky)z] & Eyaom = W Epq (11a)

Ilm

Z [Gim(Gg:pfl)(qu) + kx) + G;m(Gg(lp*l)((I*m) + ky>+

Im

+ (Ga(ap_l)(q_m) + kw)Q + (Gz(;p_l)(q_m) + k’y)g} ClQmB(pfl)(qu) = u’Qqu (Hb)

Those equations that are called the central equation can be solved numerically, if we
restrict the number of reciprocal lattice vectors G. So we wave to set an upper bound
Opq = sup{p + ¢} for the indizes p and q.



For demonstration of the numerical calculations we set O,, = 1. In the algebraic equa-
tions ([11al) and (11b)) we can substitute the square brackets as:

=pg _ (G;pfl)(Q*m) + kg )+ ... (12)

—Im

Then (11a)) and (11b]) lead to linear systems of equations that can be expressed similarly
by the matrix:

=00 hEn ol ChEN S0 Aoy Aot
=y oS CloS10 C0Z20 ChEl Ao Ao
0(2)158% C%OE(I](I) C(2)0588 C%oz(l)(l) 0(2)158% Ago | =w? | Aoo (13)
C%iE%(i) C%OE%S =10 0305(1)8 C%ﬁ%g A1 Az
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Because we set O,, = 1, in the following we can neglect all matrix elements with index

pairs 02, 02, 11, ... :
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0 0 =0t 0 C50=00 Aot Aot

If we know the Fourier expansion coefficients ¢7 ., we can solve the eigenvalue problem
for the TM and TE modes. A formula for those is derived in the following chapter.

3.3. Fourier Coefficients of the Phase Velocity

As already mentioned, we can expand c¢?(7) in a Fourier-series — see equation — with
the coefficients ¢}, , that can be calculated in the following way:

1 I -y
Cl2m — /C(T—,')Qe—l(lbl-i-mbg)TdQT (15)
Acell

cell

When we consider that

2 ; (16)

c;, r> R ... phase velocity in dielectric material
c®, r < R ... phase velocity in vacuum

where R is the radius of the holes, we can split up the integral in equation (11) and we
get:

c2 P - 2 — 2 ) -y
Cl2m — M / e—z(lbl—i—mbz)‘rer + M / e—z(lb1+mb2)~rd2r (17)
Acell Acell
cell hole

If I = m = 0 latter equation gives:
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For [ # 0 or m # 0 we change the second term to polar coordinates due to the symmetry
of the holes:

? T R
i (1b1 +mbg )7 c? _C?W (161 +mba )7
/ez( 1+m 2)'Tdydx—|— 1 //el( T +m 2)'Td7”d(p (19)
cell
0
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When we integrate the first term over the rectangular unit cell in real space, we find
that this term vanishes:

/ / R /] )]Gy

When we use the relationship (lb} + mb;) T = élm -7 = Gy cos @, we obtain a Bessel
function of the first kind for the remaining integral:

5 9 7T zGlmT’ cos
2 C_CM// v C_CM / / —iu cos
Cln, = 0+ e == rdrd Ydp du=
l Acell i Acell G
—m 0
:]02(:> Bessel function
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In the last step we used the following integral identity for Bessel functions of the first
kind:

U
[ty = v ) (22)
0
So finally we get:
2 2 2
Cm Cu _cr\ Anole (1- )sz
2 01,00m,0 2 +(1 2 )Acell:| +O([l +m| > 0)[ Acell G ——n(GmR)|, (23)

where d4 p is the Kronecker delta and ©(L) is the Heaviside step function.



4. Results

With a Matlab script — see appendix [A| — the central equations ({l1al) and (11b]) were

solved numerically for a discrete set of wave vectors k inside the first Brillouin zone of
the two-dimensional, hexagonal photonic crystal. With the solutions it was possible to
calculate the dispersion relation, the density of states and thermodynamic properties.

4.1. Dispersion Relation and Density of States

In the dispersion relation the solutions for w of the central equations ({11a}) and (11b]) are
usually plotted along directions of high symmetry ('M, MK and KI'). In the density
of states the number of solutions inside the first Brillouin zone and a frequency interval
[w,w 4+ Aw] is counted. The resulting dispersion relation and density of states for the
considered two-dimensional, hexagonal photonic crystal are depicted in figure [5]
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Figure 3: Dispersion relation (left) and density of states (right) for a hexagonal arrange-
ment of air holes in a dielectric material. The calculations were done by the
plane wave expansion method in Matlab — see code in appendix [A] The red
lines are solutions that belong to the transversal electric modes (TE), whereat
the blue lines belong to the transversal magnetic modes (TM).

In those plots a photonic band gap occurs in the interval ;2% € [0.46,0.52] where no
solutions exist. In this frequency range the electromagnetic waves are reflected for any
direction of arrival.



4.2. Thermodynamic Properties

With the density of states D(w) it was possible to calculate thermodynamic properties

by equations (24a)) - (24¢]).

1
Energy Spectral Density: u(w) =hw - D(w) » ——5——— (24a)
P ) — 1
Internal energy density: w(T) = / u(w) dw (24b)
0
ou(T
Specific heat: ev(T) = g(T ) }V:‘mst. (24c)
*© Fuw
Helmholtz free energy: f(T) = k’BT/ D(w) -1n (1 — exp(—ﬁ)> dw  (24d)
0 B
: __Of(T)
Entropy density s(T) = ~ =7 ‘N,V:const. (24e)
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Figure 4: Energy spectral density u(w) for a set of temperatures.
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Figure 5: Thermodynamic properties: internal energy wu(7'), heat capacity cy(7),
Helmholtz free energy f(7') and entropy density s(7").



A. Matlab Code

1 %% This program calculates the dispersion relation and the
density of states with the plane wave expansion method for a
hexagonal arrangement of air holes in a dielectric material
(2D photonic crystal).

2 kB = 1.380658%10" —23; h_bar = 1.05457266x10" —34; ¢ =
2.99792458%10"8;

3%% k—space in units of 2«pi/a:

4 Ngm = 30; N.mk = floor (N.gm/sqrt(3)); % number of wave wvectors
for different directions in k—space

5 Dgm = (2/sqrt(3)) / 2; % distance from Gamma to M in k—space (
half of reciprocal lattice wvector b_2)

6 Domk = D_gm/sqrt(3); % distance from M to K

7 [kxx, k_yy] = meshgrid (D _mkx(—2«N_mk:2xN_mk) /N.mk,D_gm*(—N_gm:
Ngm)/Ngm); % those variables will get the k—states inside
of the Wigner—Seitz cell (hexagon)

8 for i=1:N.mk % in this loop the hexagon is "cut” into a
rectangle

9 j=floor (N_gm—N _gm /N mkxi+2);

10 k xx (1:j,4*N.mk—i+42)=NaN; k_yy (1:j,4%xN_mk—i+2)=NaN;

11 k xx(1:j,i)=NaN; k_yy(1:j,i)=NaN;

12 k_xx (N_gm+j :end ,N.mk—i+1)=NaN; k_yy(N_gm+j:end,N.mk—i+1)=
NalN;

13 k_xx (N_gm+j :end,3*N mk+i+1)=NaN; k_yy(N_gm+j:end,3*N mk+i
+1)=NaN;

14 end;

15 k_xx = kxx("isnan(k.-xx(:))); k.yy = k.yy(“isnan(k-yy(:))); %
dispose NaN values

16 ind_gm = find (k_xx==0); ind_gm (1: ceil (numel(ind_gm) /2)—1)
=[]; % Gamma —> M

17 ind_mk = find (k_yy=D_gm); ind.mk(1:ceil(numel(ind_-mk)/2)—-1)

=]y %2 M —> K

18 ind_kg = find (k_yy==0); ind_kg(ceil (numel(ind_kg)/2)+1:end)
=[]; % K —>  Gamma

19 ind = [ind_gm; ind mk; ind_kg]; % indices for dispersion

relation plot

20 N_disp = numel(ind); N_dos = numel(k_xx); % total number of
wave vectors for the dispersion relation and the density of
states

21 %% properties of the problem:

22 ¢c_sq-rat = 1/13; % ratio of the quadratic phase velocities (

hole/material)
23 O_pq = 25; % order of reciprocal lattice wvectors (G=mxbl+nxb2
= ord-G = m_mar + n-mazx)

24 N.pq = (O_pq—1)xO_pq/2 + (O_pq+1)*x(O_pq+2)/2; % number of
reciprocal lattice wvectors (arithmetic series)

10



25 dim = 2xN_pq—1; % dimension of the matriz from the
Eigenwertproblem

26 a = 500%10° —9; A _cell = a"2xsqrt(3)/2; % distance between the
holes and area of the cell

27 R = 0.48xa; A_hole = R"2xpi; % radius and area of the holes

28 beta_TM=zeros (dim,dim); beta_TE=zeros(dim,dim); % factors due
to differential operatios

29 vec_TM=zeros (N_dos ,dim); vec_.TE=zeros(N_dos,dim); %
eigenvectors for transversal magnetic and transv. electric
modes

30 %% index transformation due to coefficient comparison

31 u=0; tic

32 p = zeros(dim,1); q = zeros(dim,1); % indices G that belongs to
the electric or magnetic field

33 for 1=0:0_pq

34 for j=0:i

35 if (i>0), t=((i+1)*i)/2+1+j; else t=1; end;

36 p(t)=j; a(t)=i—j;

37 if (j>0 && j<i)

38 p(N_pg—u)=-p(t); q(N-pg—u)=q(t); u=u+1;

39 end ;

40 end ;

41 end;

42 p = [flipud(p(2:N_pq));=p(1:Npq)]; q = [flipud(q(2:N_pq));—q
(1:N_pq) J;

43 [nnl, nn2] = meshgrid(p); [00l, 002] = meshgrid(q);

44 1 = nn2-nmnl; m = oo2—oo0l;

45 %% setting up and solving the system of algebraic equations (
FEigenwertproblem ) — calculating the dispersion relation

46 G = 2xpi/axsqrt(1.724(2xm-1).72/3);

47 ¢.sq.G = (1—c_sq_rat) /A _cell*2xpixR./G.x besselj (1,G«R); %
expansion coefficients for the speed of light

48 ¢_8q-G (1==0 & m==0) = c_sq.rat+(l—c_sq_-rat )*A_hole/A_cell; %
diagonal elements of the expansion coefficients

49 Gx =mn2 — 1; Gy = (2%(002-m)—(nn2-1))/sqrt(3); % 2— and y—
components of the reciprocal lattice wvectors corresponding
to the F— or B-field

50 wb = waitbar (0,[ working ...’ ,num2str(ceil (0/N_dos*x100)),’ %
done’]) ;

51 pool = 10;

52 matlabpool (pool)

53 for i=1:pool:numel(k_xx)

54 vec_tm = zeros(pool ,dim); vec_te = zeros(pool,dim);
55 parfor j=0:pool—1

56 p=1i+];

57 if p<=numel (k_xx)
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58 kx = kxx(p); k.y = k.yy(p); % 2— and y—components
for the different directions in k—space

59 beta.TM = (Gx+k_x). 2+ (G_y+k_y). 2; % factor due
to differential operators from rot(rot(E))=w"2xFE
, where E.x = Ey =0

60 beta TE = 1.%x(Gxt+k_x) 4+ (2xm-1)/sqrt(3).+(G_y+k_y)
+ beta.TM; % factor due to differential
operators from rot(c 2xrot(B))=w"2«B, where B_x

=Dy =20

61 ewp.TM = c_sq_G .xbeta . TM; % setting up the
Eigenwertproblems for the TM and TE modes

62 ewp.TE = ¢_.sq_G.xbeta_TE; % expansion coefficients
times the factor from the differential operators

63 %solving the TM and TE eigenvalue problems

64 vec_tm (j+1,:) = sort(sqrt(eig(ewp TM(:,:))));

65 vec_te(j+1,:) = sort(sqrt(eig(ewp TE(:,:))));

66 end ;

67 end ;

68 vec.TM(1i:i+pool —1,:) = vec_tm; vec.TE(i:i4+pool—1,:) =

vec_te;
69 t = toc; waitbar(i/N_dos,wb,[ Working ' ,num2str(floor(t
/60°2)),7 h, ...
70 ,num?2str (floor (t/60)),’ min and ’ ,num2str(rem(t,60)),’
sec ... ,num2str(ceil (i/N_dos*x100)),’ % done!’]);

71 end;

72 matlabpool close

73 vec.TM(N_dos+1:end,:) =[]; vec.TE(N_dos+1l:end,:) =[];

74 bands = 1:9; % energy bands of interest

75 dispersion_relation = [vec.TM(ind ,bands) ,vec_.TE (ind ,bands)|*(2x

pixc)/a;
76 %% calculation of the density of states
77n.w = 100; [dos,w.| = hist ([vec.TE(vec.TE<1);vec.TM (vec.TM<1)

]*(2xpixc)/a,n.w);

78 dos=dos/(w_(2)—w_(1))/N_dos/A _cell; % normalize density of
states to [s/m"2]

79 %% calculation of the thermodynamic properties:

80 T_max = 2500; n. T = 126; T_ = ceil(linspace(0,T max,n.T));

81 T = repmat(T_,n.w,1);

82w = repmat(w_’,1,n.T);

83 bose_einstein = 1./(exp(h_barxw/k.B./T)—1);

84 DOS = repmat(dos’,1,n.T);

85 u_spectral = h_barxw.xbose_einstein .*xDOS;

86 du_spectral dT = —(h_barsw./T)."2/k_B.*DOS.xexp(h_bar*w/k_B./T)
.*bose_einstein .  2;

87 u_internal = trapz(w(:,1),u_spectral);

88 ¢V = —trapz(w(:,1) ,du_spectral_dT);

89 f = trapz(w(:,1) ,k B«T.*xDOS.*log(l—exp(—h_barxw/k_ B./T)));
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90 s = —f.«xT_ — trapz(w(:,1),DOS./(1—exp(—h_barxw/k_-B./T)).xh_bar
sw. /T

91 close (wb);

92 %% writing the results to files

93 fname = '2Dhex_dispersion_info.txt’;

94 dlmwrite (fname, [num2str(numel(ind_gm)),’ ', num2str(numel(
ind_gm )+numel (ind_mk)),’” ' num2str(N_disp)|, "delimiter’,’");

95 fname = ’'2Dhex_dispersion_ TM.txt’; dlmwrite(fname, [’k’ sprintf

(7 TMXAi’ ,bands) |, "delimiter’,’7);
96 dlmwrite (fname, [(1:N_disp)’,vec.TM(ind , bands)x*(2xpixc)/a
x10" —15], ’—append’, ’delimiter’, ' 7);
97 fname = ’'2Dhex_dispersion_TE.txt’; dlmwrite(fname, [’k’ sprintf
(7 TEAi’ ,bands) ]|, "delimiter’,’7);
98 dlmwrite (fname, [(1:N_disp)’,vec_.TE(ind ,h bands)x*(2xpixc)/a

x10" —15], ’—append’, ’delimiter’, = 7);

99 fname = '2Dhex _density_of_states.txt’; dlmwrite(fname, ’w dos’,
"delimiter’,’7);

100 dlmwrite (fname, [0,0;w_"%x10"—15,dos’;w_(end)*10"—15,0], '—
append’, ’delimiter’, ’ 7);

101 fname = '2Dhex_spectral_energy_density.txt’; ind_T=mod(T_,500)

102 dlmwrite (fname, [’'w’ sprintf(’ T%i ' ,T_(ind_T))], delimiter’,’ ")

103 dlmwrite (fname, [zeros(1l,sum(ind_T)+1);w_"x10"—15,u_spectral (:,

ind_T)*10"23], ’—append’, ’'delimiter’, * 7);

104 fname = ’'2Dhex_thermo_prop.txt’; dlmwrite(fname, 'T u_int ¢V f
s’, delimiter’,’7);

105 dlmwrite (fname, [T_’ u_internal '«10°8,¢.V’%10°11,f’%x10"8,s
"x10°5], ’'—append’, ’delimiter’, ’ 7);
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