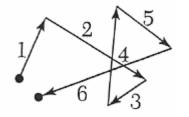


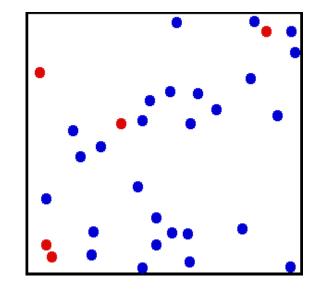
Technische Universität Graz

Institute of Solid State Physics

# 23. Kinetic theory

June 19, 2018


# kinetic theory


describe electrons as a gas of particles

$$v_F = 10^8 \text{ cm/s.}$$

The average time between scattering events  $\tau_{sc}$  can be calculated by Fermi's golden rule

mean free path:  $l = v_F \tau_{sc} \sim 1 \text{ nm} - 1 \text{ cm}$ 





#### Electrons as waves or particles

Scattering of electrons can be thought of as transitions between *k* states or as collisions between particles.

Umklapp scattering of electrons by phonons makes large changes in the momentum of the electrons because of the reciprocal lattice vector **G**.

#### Ballistic transport

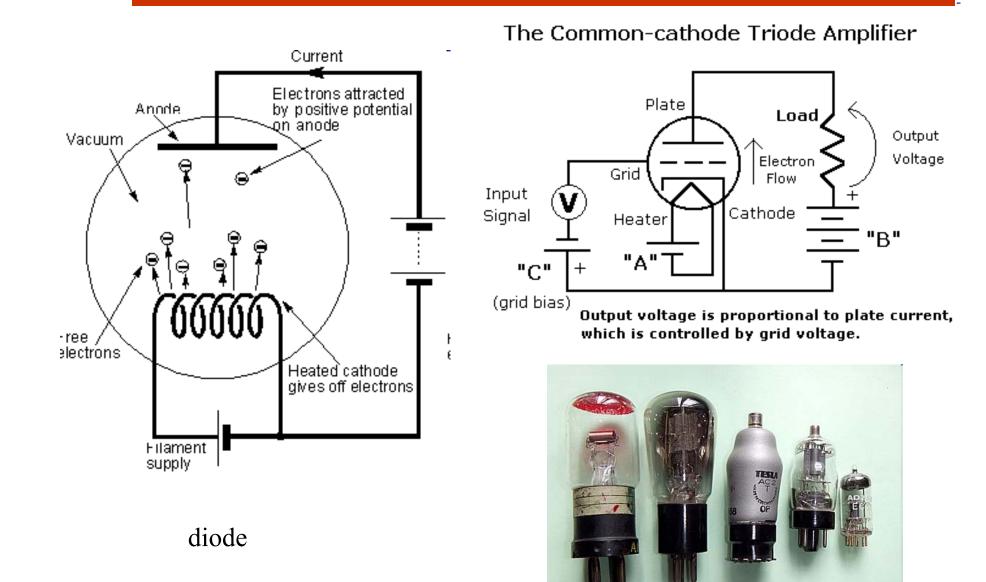
$$\vec{F} = m\vec{a} = -e\vec{E} = m\frac{d\vec{v}}{dt}$$
$$\vec{v} = \frac{-e\vec{E}t}{m} + \vec{v}_0$$
$$\vec{x} = \frac{-e\vec{E}t^2}{2m} + \vec{v}_0t + \vec{x}_0$$

electrons in an electric field follow a parabola.

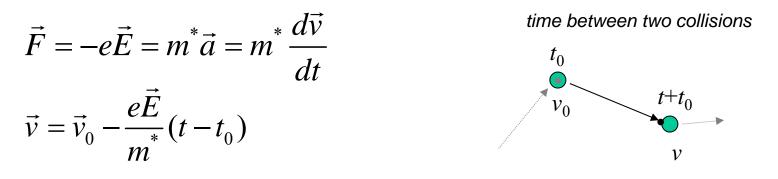
electrons in a magnetic field move in a spiral

electrons crossed electric and magnetic fields spiral along the direction perpendicular to the electric and magnetic fields

| 🕫 C:\Program Files\Cornell\SSS\winbin\drude.exe |                      |                                  |  |  |  |
|-------------------------------------------------|----------------------|----------------------------------|--|--|--|
| quit display                                    | large configure      | presets help                     |  |  |  |
| show graph show average                         | run                  | show graph show average          |  |  |  |
| time (ps) 89.0                                  | initialize           | •                                |  |  |  |
| യം                                              | E_x (10^4 V/m): 0.0  | •                                |  |  |  |
| • 0                                             | E_y (10^4 V/m): 0.0  |                                  |  |  |  |
|                                                 | B_z (T): 0.0         |                                  |  |  |  |
|                                                 | tau (ps): 1.00e+00   |                                  |  |  |  |
|                                                 | temperature (K): 300 |                                  |  |  |  |
| <br>●                                           | omega (10^12/sec): 0 | •                                |  |  |  |
|                                                 | phase (radians): 0.0 |                                  |  |  |  |
|                                                 | speed 2              |                                  |  |  |  |
| position: (4.12, 2.06) 10^-6 m                  |                      | velocity: (-28.4, 40.0) 10^4 m/s |  |  |  |


If no forces are applied, the electrons diffuse.

The average velocity moves against an electric field.


In just a magnetic field, the average velocity is zero.

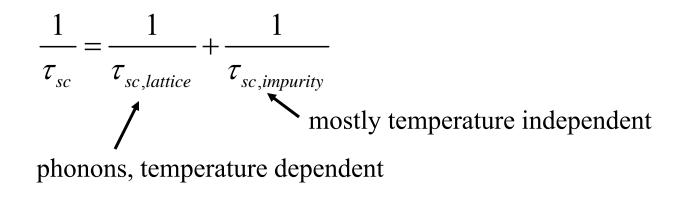
In an electric and magnetic field, the electrons move in a straight line at the Hall angle.

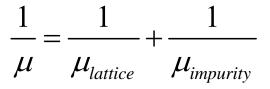
# Vacuum diodes



#### Diffusive transport




 $<_{v_0}>=0$   $< t - t_0> = \tau_{sc} <$  average time between scattering events




drift velocity: 
$$\vec{v}_d = -\mu \vec{E}$$

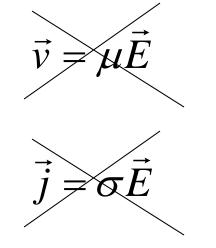
Ohm's law: 
$$\vec{j} = -ne\vec{v}_d = ne\mu\vec{E} = \sigma\vec{E}$$

## Matthiessen's rule





# Ballistic transport in transistors


The mean free path  $\sim 100 \text{ nm} > \text{gate length} \sim 20 \text{ nm}$ 

v not proportional to E

j not proportional to E

nonlocal response

Electrons bend in a magnetic field like they do in vacuum.

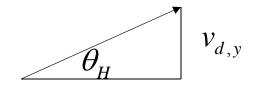


#### Magnetic field (diffusive regime)

$$\vec{F} = m\vec{a} = -e\vec{E} = m\frac{\vec{v}_d}{\tau_{\rm sc}} \qquad -\frac{e\tau_{\rm sc}}{m}\vec{E} = \vec{v}_d$$
$$\vec{F} = m\vec{a} = -e\left(\vec{E} + \vec{v} \times \vec{B}\right) = m\frac{\vec{v}_d}{\tau_{\rm sc}}$$

If *B* is in the *z*-direction, the three components of the force are

$$-e\left(E_{x}+v_{dy}B_{z}\right) = m\frac{v_{dx}}{\tau_{sc}}$$
$$-e\left(E_{y}-v_{dx}B_{z}\right) = m\frac{v_{dy}}{\tau_{sc}}$$
$$-e\left(E_{z}\right) = m\frac{v_{dz}}{\tau_{sc}}$$


# Magnetic field (diffusive regime)

$$v_{d,x} = -\frac{eE_x\tau_{sc}}{m} - \frac{eB_z}{m}\tau_{sc}v_{d,y}$$
$$v_{d,y} = -\frac{eE_y\tau_{sc}}{m} + \frac{eB_z}{m}\tau_{sc}v_{d,x}$$

$$v_{d,z} = -\frac{eE_z\tau_{sc}}{m}$$

If 
$$E_y = 0, E_z = 0$$


$$v_{d,y} = -\frac{eB_z}{m}\tau_{sc}v_{d,x}$$



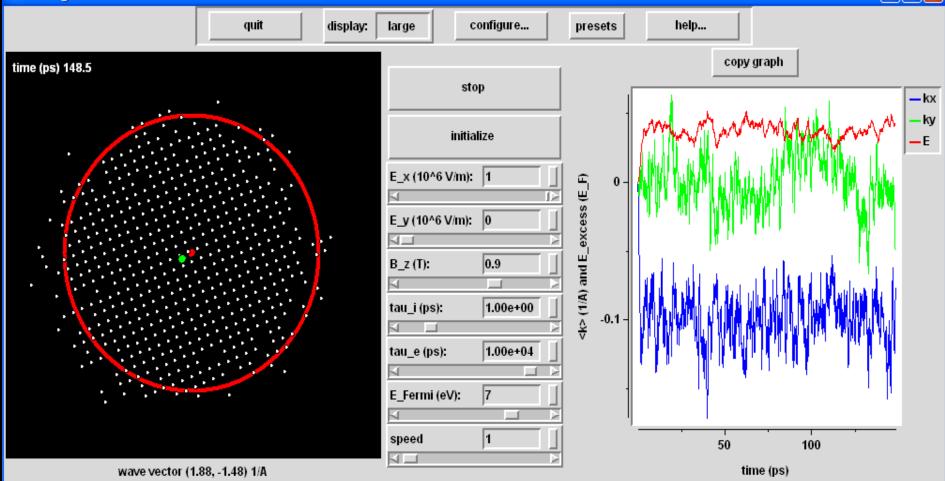
 $V_{d,x}$ 

$$\tan \theta_{H} = -\frac{eB_{z}}{m}\tau_{sc}$$

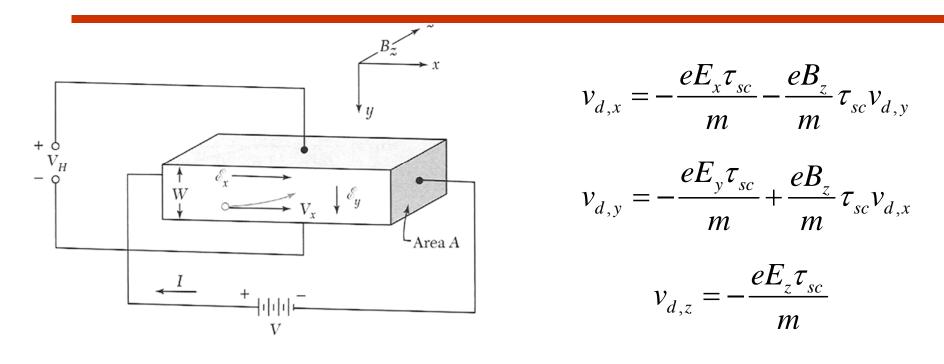
# Crossed E and B fields



| 74 C:\Program Files\Cornell\SSS\winbin\drude.exe |                                    |  |  |  |  |
|--------------------------------------------------|------------------------------------|--|--|--|--|
| quit disp                                        | play: large configure presets help |  |  |  |  |
| show graph show average                          | run show graph show average        |  |  |  |  |
| time (ps) 89.0                                   | initialize                         |  |  |  |  |
| യം ഗ                                             | E_x (10^4 V/m): 0.0                |  |  |  |  |
| • 0                                              | E_y (10^4 V/m): 0.0                |  |  |  |  |
| ີຊ 🗞 👔 🖉 🖕                                       | B_z (T): 0.0                       |  |  |  |  |
|                                                  | tau (ps): 1.00e+00                 |  |  |  |  |
| శిళి లో                                          | temperature (K): 300               |  |  |  |  |
| **<br>•                                          | omega (10^12/sec): 0               |  |  |  |  |
|                                                  | phase (radians): 0.0               |  |  |  |  |
|                                                  | speed 2                            |  |  |  |  |
| position: (4.12, 2.06) 10^-6 m                   | velocity: (-28.4, 40.0) 10^4 m/s   |  |  |  |  |


If no forces are applied, the electrons diffuse.

The average velocity moves against an electric field.


In just a magnetic field, the average velocity is zero.

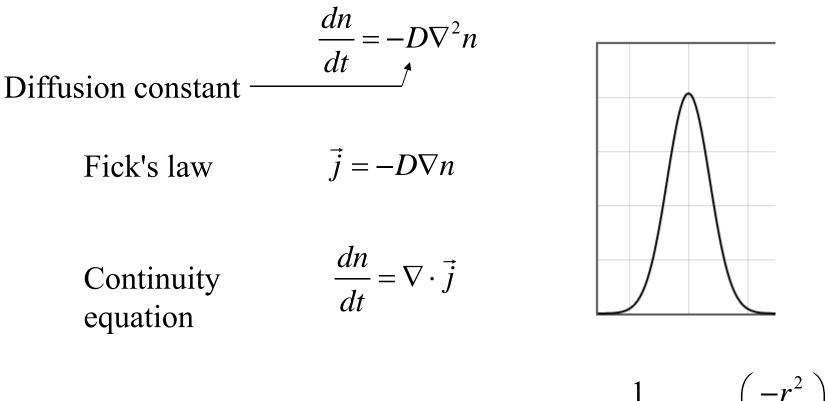
In an electric and magnetic field, the electrons move in a straight line at the Hall angle.

#### 74 C:\Program Files\Cornell\SSS\winbin\sommer.exe



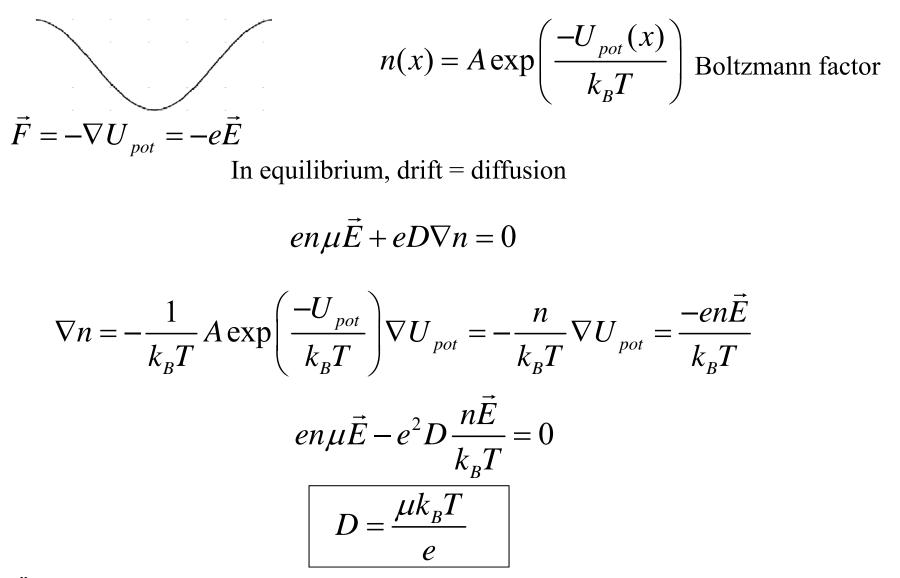
# The Hall Effect (diffusive regime)




If  $v_{d,y} = 0$ ,

 $E_y = v_{d,x}B_z = V_H/W = R_H j_x B_z$   $V_H$  = Hall voltage,  $R_H$  = Hall Constant  $j_x$ =-  $nev_{d,x}$ 

$$R_H = E_y / j_x B_z = -1/ne$$


| Metal    | Method                    | Experimental $R_H$ , in $10^{-24}$ CGS units | Assumed<br>carriers<br>per atom | Calculated $-1/nec$ , in $10^{-24}$ CGS units |
|----------|---------------------------|----------------------------------------------|---------------------------------|-----------------------------------------------|
| Li       | conv.                     | -1.89                                        | 1 electron                      | -1.48                                         |
| Na       | helicon                   | -2.619                                       | 1 electron                      | -2.603                                        |
| ĸ        | conv.<br>helicon<br>conv. | -2.3<br>-4.946<br>-4.7                       | 1 electron                      | -4.944                                        |
| вb       | conv.                     | -5.6                                         | 1 electron                      | -6.04                                         |
| Cu       | conv.                     | -0.6                                         | 1 electron                      | -0.82                                         |
| ag<br>an | conv.                     | -1.0                                         | 1 electron                      | -1.19                                         |
| 4-       | conv.                     | -0.8                                         | 1 electron                      | -1.18                                         |
| Be       | conv.                     | +2.7                                         |                                 |                                               |
| Mg       | conv.                     | -0.92                                        |                                 |                                               |
| 4]       | helicon                   | +1.136                                       | 1 hole                          | +1.135                                        |
| lin.     | helicon                   | +1.774                                       | 1 hole                          | +1.780                                        |
| 4.5      | conv.                     | +50.                                         |                                 |                                               |
| 58       | conv.                     | -22.                                         |                                 |                                               |
| 30       | conv.                     | -6000.                                       |                                 |                                               |

# Diffusion equation/ heat equation



$$n = \frac{1}{\sqrt{4\pi Dt}} \exp\left(\frac{-r}{4Dt}\right)$$

# Einstein relation



Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, A. Einstein (1905).