Technische Universität Graz

13. Photons

May 3, 2018

Light in a layered material

The dielectric constant and speed of light are different for the two layers.

Distributed Bragg reflector

Light in a layered material

Wave equation in a periodic medium $\quad c^{2}(x) \frac{\partial^{2} A_{j}}{\partial x^{2}}=\frac{\partial^{2} A_{j}}{\partial t^{2}}$

Separation of variables
Hill's equation

$$
\begin{aligned}
& A_{j}(x, t)=\xi(x) e^{-i \omega t} \\
& \frac{d^{2} \xi(x)}{d x^{2}}=-\frac{\omega^{2}}{c^{2}(x)} \xi(x)
\end{aligned}
$$

Normal modes don't have a clearly defined wavelength.

2nd order linear differential equation with periodic coefficients.
Mathematically equivalent to the time independent Schrödinger equation.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}=(E-V(x)) \psi(x)
$$

Differential equations

The solutions to a linear differential equation with constant coefficients,

$$
A \frac{d^{2} y}{d x^{2}}+B \frac{d y}{d x}+C y=D
$$

have the form,

$$
e^{\lambda x}
$$

The solutions to a linear differential equation with periodic coefficients,

$$
A \frac{d^{2} y}{d x^{2}}+B \frac{d y}{d x}+C(x) y=D
$$

have the form,

$$
e^{i k x} u_{k}(x) \quad \text { where } \quad u_{k}(x)=u_{k}(x+a)
$$

Swing

$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+\frac{m g}{l(1-A \cos (\omega t))} x=0$.

For some parameters there are periodic solutions (band).

For some parameters there are exponentially growing and decaying solutions (bandgap).
http://lampx.tugraz.at/~hadley/physikm/apps/numerical_integration/parametric.de.php

Translational symmetry

The normal modes are eigenfunctions of the translation operator

The normal modes have Bloch form.
$\xi(x)=e^{i k x} u_{k}(x) \quad$ where $\quad u_{k}(x)=u_{k}(x+a)$

$$
T e^{i k x} u_{k}(x)=e^{i k(x+a)} u_{k}(x+a)=e^{i k a} e^{i k x} u_{k}(x)
$$

Light in a layered material

Hill's equation $\frac{d^{2} \xi(x)}{d x^{2}}=-\frac{\omega^{2}}{c^{2}(x)} \xi(x)$

In region I, the solutions are $\sin \left(\omega x / c_{1}\right)$ and $\cos \left(\omega x / c_{1}\right)$.
In region II, the solutions are $\sin \left(\omega x / c_{2}\right)$ and $\cos \left(\omega x / c_{2}\right)$.
Match the solutions at the boundaries.

Normal modes don't have a clearly defined wavelength.

Solutions in region I and region II

Two linearly independent solutions are specified by the boundary conditions

$$
\xi_{1}(0)=1, \quad \xi_{1}^{\prime}(0)=0, \quad \xi_{2}(0)=0, \quad \xi_{2}^{\prime}(0)=1
$$

In region I,

$$
\xi_{1}(x)=\cos \left(\frac{\omega x}{c_{1}}\right), \quad \xi_{2}(x)=\frac{c_{1}}{\omega} \sin \left(\frac{\omega x}{c_{1}}\right)
$$

In region II,

$$
\begin{aligned}
& \xi_{1}(x)=\cos \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(x-b)\right)-\frac{c_{2}}{c_{1}} \sin \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(x-b)\right) \\
& \xi_{2}(x)=\frac{c_{1}}{\omega} \sin \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(x-b)\right)+\frac{c_{2}}{\omega} \cos \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(x-b)\right)
\end{aligned}
$$

Wave vector

$$
\begin{gathered}
k=\frac{1}{a} \tan ^{-1}\left(\sqrt{\frac{4}{\alpha(\omega)^{2}}-1}\right) \\
\alpha(\omega)=2 \cos \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(a-b)\right)-\frac{c_{1}^{2}+c_{2}^{2}}{c_{1} c_{2}} \sin \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(a-b)\right)
\end{gathered}
$$

$a:$	$\boxed{600 \mathrm{E}-9}$	$[\mathrm{~m}]$
$b:$	$250 \mathrm{E}-9$	$[\mathrm{~m}]$
$c_{1}:$	2.998 E 8	$[\mathrm{~m} / \mathrm{s}]$
$c_{2}:$	1 EE 8	$[\mathrm{~m} / \mathrm{s}]$
$\omega_{\max }$	$: 5 \mathrm{EE} 15$	$[\mathrm{rad} / \mathrm{s}]$

plot

Band gap: exponentially growing solutions

The one solution grows exponentially and the other decays like $\exp (-x / \delta)$.

Gray where $|\alpha|>2$.

$\delta=\frac{-a}{\ln \left(\min \left(\lambda_{-}, \lambda_{+}\right)\right)}$

Band: Bloch waves

The solutions have the form $e^{i k x} u_{k}(x)$ where $u_{k}(x+a)=u_{k}(x)$

a :	600E-9	[m]
b:	250E-9	[m]
c_{1} :	2.998 E 8	[m/s]
c_{2} :	1 E 8	[m/s]
	1 E15	[rad/s]

Bloch waves

$$
\xi=e^{i k x} u_{k}(x)
$$

For periodic boundary conditions $L=N a$, the allowed values of k are exactly those allowed for waves in vacuum.
k labels the eigenfunctions of the translation operator.

$$
T e^{i k x} u_{k}(x)=e^{i k(x+a)} u_{k}(x+a)=e^{i k a} e^{i k x} u_{k}(x)
$$

Dispersion relation

$$
\alpha(\omega)=2 \cos \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(a-b)\right)-\frac{c_{1}^{2}+c_{2}^{2}}{c_{1} c_{2}} \sin \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(a-b)\right)
$$

Diffraction condition

Dispersion relation

$$
k=\frac{1}{a} \tan ^{-1}\left(\sqrt{\frac{4}{\alpha(\omega)^{2}}-1}\right)
$$

$$
\begin{gathered}
\tan (k a)=\sqrt{\frac{4}{\alpha^{2}}-1} \\
e^{i k x} u_{k}(x)=e^{i k x} \sum_{G} a_{G} e^{i G x} \\
k=k^{\prime}+G^{\prime} \\
e^{i k x} u_{k}(x)=e^{i\left(k^{\prime}+G^{\prime}\right) x} \sum_{G} a_{G} e^{i G x}
\end{gathered}
$$

There is only one k^{\prime} in the first Brillouin zone and the convention is to use that one.
$e^{i k x} u_{k}(x)=e^{i k x} \sum_{G} a_{G} e^{i\left(G+G^{\prime}\right) x}$

Zone schemes

Density of states

The density of states can be determined from the dispersion relation.

Energy spectral density

Analog to the Planck radiation curve.

Thermodynamic quantities

Energy spectral density:

$$
u(\omega)=\frac{\hbar \omega D(\omega)}{\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1}
$$

Internal energy density:

$$
u(T)=\int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1} d \omega
$$

Helmholz free energy density:

$$
f(T)=k_{B} T \int_{0}^{\infty} D(\omega) \ln \left(1-\exp \left(\frac{-\hbar \omega}{k_{B} T}\right)\right) d \omega
$$

Entropy density: $s=-\frac{\partial f}{\partial T}=-k_{B} \int_{0}^{\infty} D(\omega)\left(\ln \left(1-e^{-\hbar \omega / k_{B} T}\right)+\frac{\hbar \omega}{k_{B} T\left(1-e^{\hbar \omega / k_{B} T}\right)}\right) d \omega$

Specific heat:

$$
c_{\nu}=\int\left(\frac{\hbar \omega}{T}\right)^{2} \frac{D(\omega) \exp \left(\frac{\hbar \omega}{k_{B} T}\right)}{k_{B}\left(\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1\right)^{2}} d \omega
$$

3d photonic crystal: complete gap , $\varepsilon=12: 1$

[S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]
http://ab-initio.mit.edu/photons/tutorial/L1-bloch.pdf

Home

Introduction
Molecules
Crystal Structure
Crystal
Crystal Binding
Crystal Binding
Photons
Phonons
Electrons
Energy bands
Crystal Physics
Semiconductors
Magnetism
Exam questions
Appendices
Lectures
TUG students
Student projects
Skriptum
Books
Making
presentations
< hide <

The first Brillouin zone of a face centered cubic lattice

$$
\vec{k}=u \vec{b}_{1}+w \vec{b}_{2}+w \vec{b}_{3}: \quad(u, v, w)
$$

Symmetry points (u, v, w)	$\left[k_{x}, k_{y}, k_{z}\right]$	Point group
$\Gamma:(0,0,0)$	$[0,0,0]$	m 3 m
$\mathrm{X}:(0,1 / 2,1 / 2)$	$[0,2 \pi / a, 0]$	$4 / \mathrm{mmm}$
$\mathrm{L}:(1 / 2,1 / 2,1 / 2)$	$[\pi / a, \pi / a, \pi / a]$	$\overline{3} \mathrm{~m}$
$\mathrm{~W}:(1 / 4,3 / 4,1 / 2)$	$[\pi / a, 2 \pi / a, 0]$	$\overline{4} 2 \mathrm{~m}$
$\mathrm{U}:(1 / 4,5 / 8,5 / 8)$	$[\pi / 2 a, 2 \pi / a, \pi / 2 a]$	mm 2
$\mathrm{~K}:(3 / 8,3 / 4,3 / 8)$	$[3 \pi / 2 a, 3 \pi / 2 a, 0]$	mm 2

$$
\begin{aligned}
& \overline{\Gamma \mathrm{L}}=\frac{\sqrt{3} \pi}{a}, \overline{\Gamma \mathrm{X}}=\frac{2 \pi}{a}, \overline{\Gamma \mathrm{~W}}=\frac{\sqrt{5} \pi}{a} \\
& \overline{\Gamma \mathrm{~K}}=\overline{\Gamma \mathrm{U}}=\frac{3 \pi}{\sqrt{2} a}, \overline{\mathrm{KW}}=\overline{X U}=\frac{\pi}{\sqrt{2} a}
\end{aligned}
$$

Symmetry lines	Point group
$\Delta:(0, v, v) 0<v<1 / 2$	4 mm
$\Lambda:(w, w, w) 0<w<1 / 2$	3 m
$\sum:(u, 2 u, u) 0<u<3 / 8$	mm 2
$\mathrm{~S}:(2 u, 1 / 2+2 u, 1 / 2+u) 0<u<1 / 8$	mm 2
$\mathrm{Z}:(u, 1 / 2+u, 1 / 2) 0<u<1 / 4$	mm 2
$\mathrm{Q}:(1 / 2-u, 1 / 2+u, 1 / 2) 0<u<1 / 4$	2

The real space and reciprocal space primitive translation vectors are

$$
\begin{array}{lll}
\vec{a}_{1}=\frac{a}{2}(\hat{x}+\hat{z}), & \vec{a}_{2}=\frac{a}{2}(\hat{x}+\hat{y}), & \vec{a}_{3}=\frac{a}{2}(\hat{y}+\hat{z}), \\
\vec{b}_{1}=\frac{2 \pi}{a}\left(\hat{k}_{x}-\hat{k}_{y}+\hat{k}_{z}\right), & \vec{b}_{2}=\frac{2 \pi}{a}\left(\hat{k}_{x}+\hat{k}_{y}-\hat{k}_{z}\right), & \vec{b}_{3}=\frac{2 \pi}{a}\left(-\hat{k}_{x}+\hat{k}_{y}+\hat{k}_{z}\right)
\end{array}
$$

Cut-out patterns for Brillouin zones

Cut-out patterns to make your own models of the Brillouin zones. The symmetry points are red and the symmetry lines are blue

- simple cubic
- face centered cubic
- body centered cubic
- hexagonal
- tetragonal
- body centered tetragonal
- orthorhombic
- face centered orthorhombic
- body centered orthorhombic
- base centered orthorhombic

Inverse opal photonic crystal

FIgure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a
 face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon=13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book

