

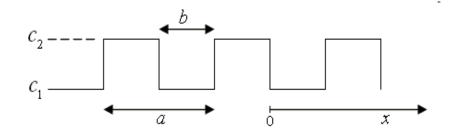
Technische Universität Graz

Institute of Solid State Physics

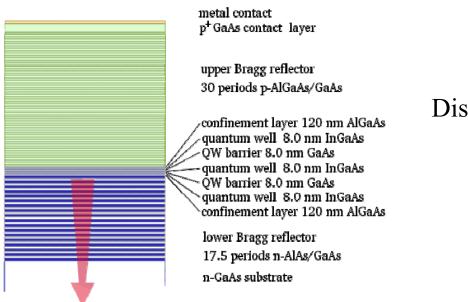
13. Photons

May 3, 2018

Light in a layered material



The dielectric constant and speed of light are different for the two layers.



Distributed Bragg reflector

Light in a layered material

Wave equation in a periodic medium

$$c^{2}(x)\frac{\partial^{2}A_{j}}{\partial x^{2}} = \frac{\partial^{2}A_{j}}{\partial t^{2}}$$

Separation of variables $A_j(x,t) = \xi(x)e^{-i\omega t}$

Hill's equation $\frac{d^2\xi(x)}{dx^2} = -\frac{\omega^2}{c^2(x)}\xi(x)$

Normal modes don't have a clearly defined wavelength.

2nd order linear differential equation with periodic coefficients. Mathematically equivalent to the time independent Schrödinger equation.

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = \left(E - V(x)\right)\psi(x)$$

Differential equations

The solutions to a linear differential equation with constant coefficients,

$$A\frac{d^2y}{dx^2} + B\frac{dy}{dx} + Cy = D,$$

have the form,

 $e^{\lambda x}$.

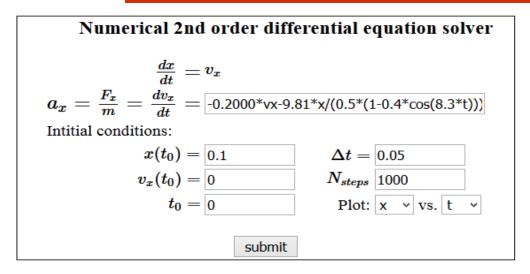
The solutions to a linear differential equation with periodic coefficients,

$$A\frac{d^2y}{dx^2} + B\frac{dy}{dx} + C(x)y = D,$$

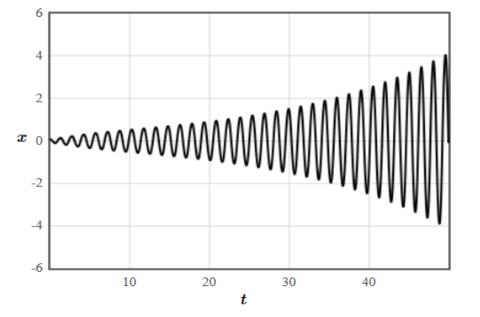
have the form,

$$e^{ikx}u_k(x)$$
 where $u_k(x) = u_k(x+a)$

Swing



$$mrac{d^2x}{dt^2}+brac{dx}{dt}+rac{mg}{l(1-A\cos(\omega t))}x=0.$$



For some parameters there are periodic solutions (band).

For some parameters there are exponentially growing and decaying solutions (bandgap).

http://lampx.tugraz.at/~hadley/physikm/apps/numerical_integration/parametric.de.php

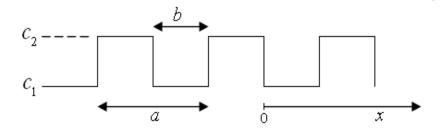
Translational symmetry

The normal modes are eigenfunctions of the translation operator

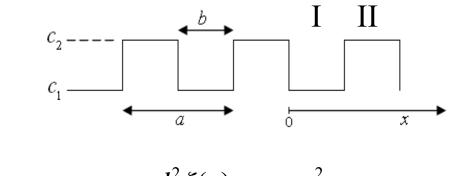
The normal modes have Bloch form.

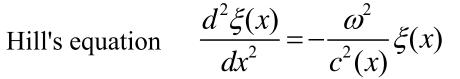
$$\xi(x) = e^{ikx}u_k(x)$$
 where $u_k(x) = u_k(x+a)$

$$Te^{ikx}u_{k}(x) = e^{ik(x+a)}u_{k}(x+a) = e^{ika}e^{ikx}u_{k}(x)$$



Light in a layered material





In region I, the solutions are $\sin(\omega x/c_1)$ and $\cos(\omega x/c_1)$. In region II, the solutions are $\sin(\omega x/c_2)$ and $\cos(\omega x/c_2)$. Match the solutions at the boundaries.

Normal modes don't have a clearly defined wavelength.

Solutions in region I and region II

Two linearly independent solutions are specified by the boundary conditions

$$\xi_1(0) = 1, \quad \xi_1'(0) = 0, \quad \xi_2(0) = 0, \quad \xi_2'(0) = 1$$

In region I,

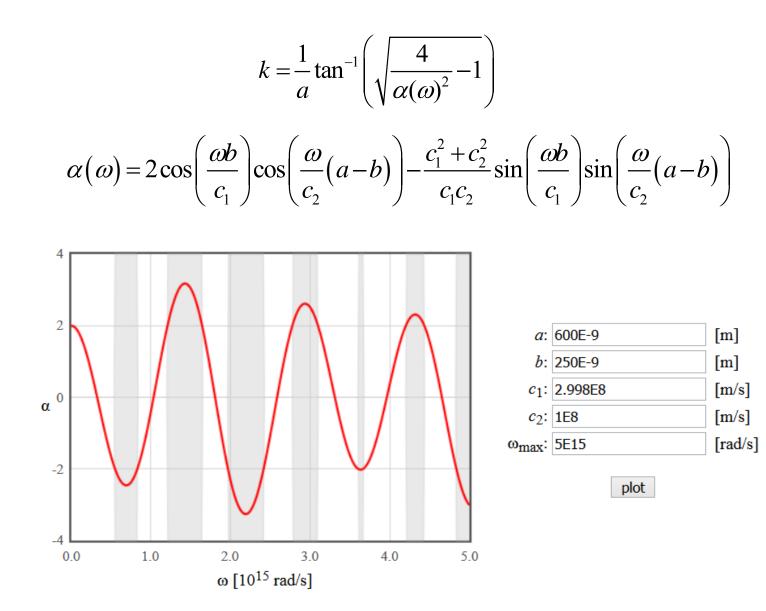
$$\xi_1(x) = \cos\left(\frac{\omega x}{c_1}\right), \qquad \qquad \xi_2(x) = \frac{c_1}{\omega}\sin\left(\frac{\omega x}{c_1}\right)$$

In region II,

$$\xi_{1}(x) = \cos\left(\frac{\omega b}{c_{1}}\right)\cos\left(\frac{\omega}{c_{2}}(x-b)\right) - \frac{c_{2}}{c_{1}}\sin\left(\frac{\omega b}{c_{1}}\right)\sin\left(\frac{\omega}{c_{2}}(x-b)\right),$$

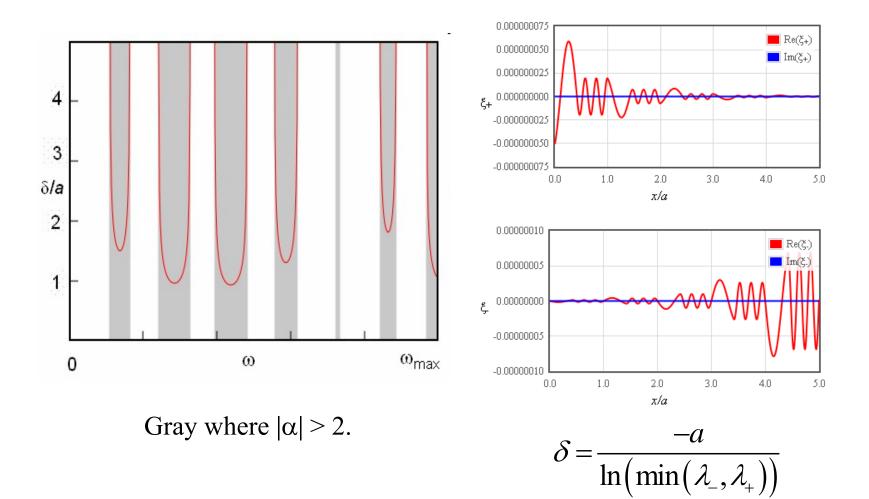
$$\xi_{2}(x) = \frac{c_{1}}{\omega}\sin\left(\frac{\omega b}{c_{1}}\right)\cos\left(\frac{\omega}{c_{2}}(x-b)\right) + \frac{c_{2}}{\omega}\cos\left(\frac{\omega b}{c_{1}}\right)\sin\left(\frac{\omega}{c_{2}}(x-b)\right)$$

Wave vector

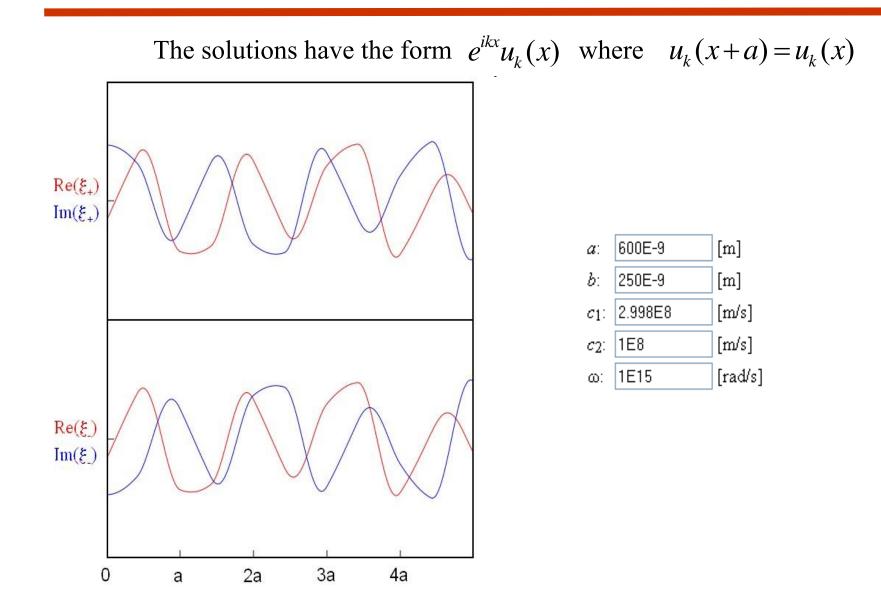


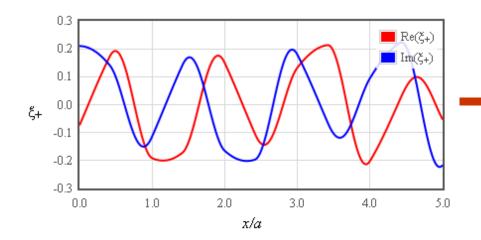
Band gap: exponentially growing solutions

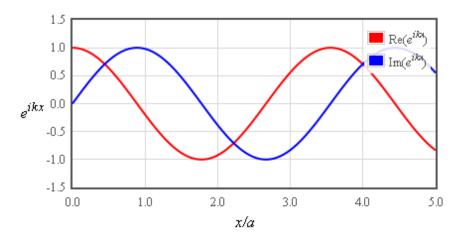
The one solution grows exponentially and the other decays like $exp(-x/\delta)$.

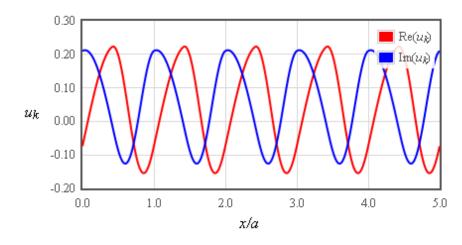


Band: Bloch waves









Bloch waves

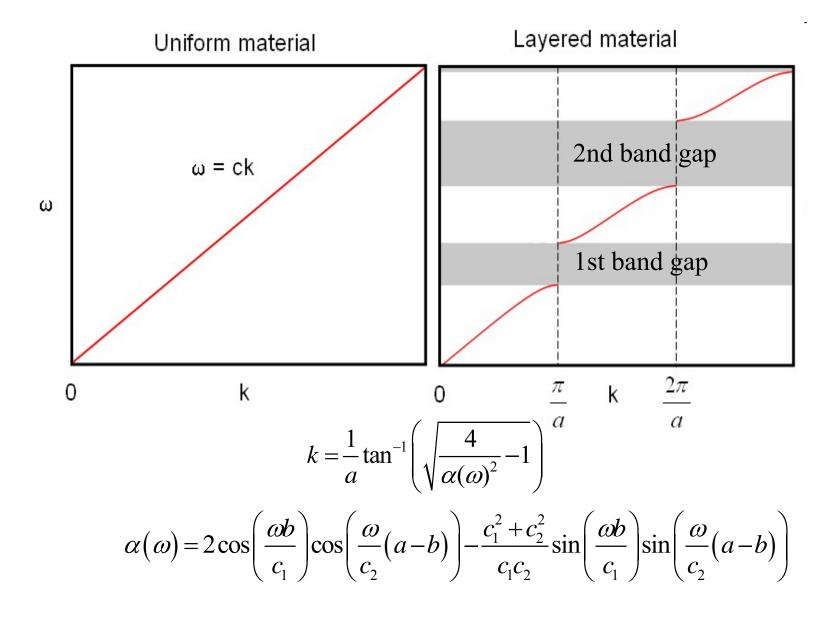
$$\xi = e^{ikx} u_k(x)$$

For periodic boundary conditions L = Na, the allowed values of k are exactly those allowed for waves in vacuum.

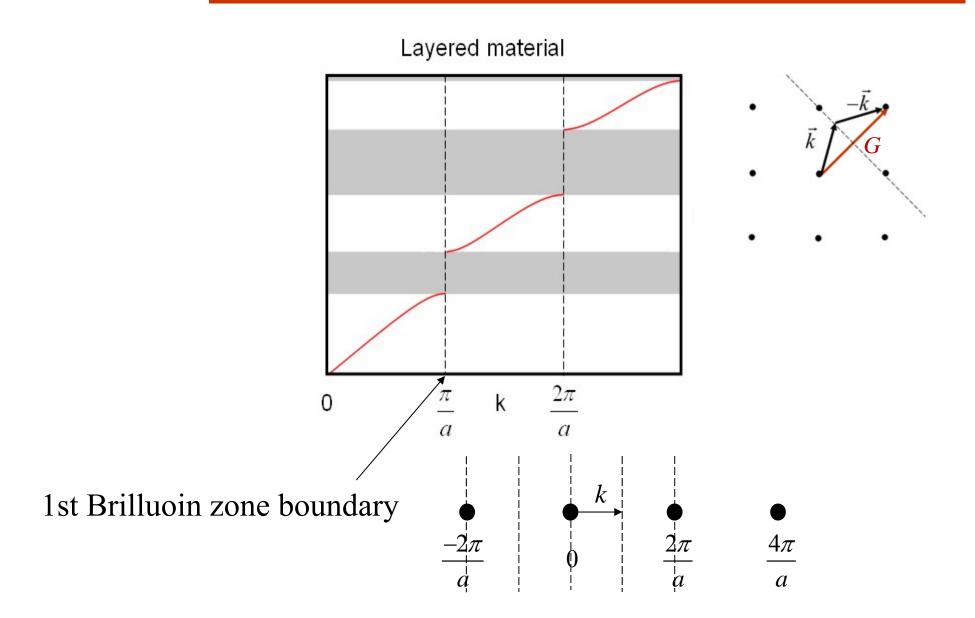
k labels the eigenfunctions of the translation operator.

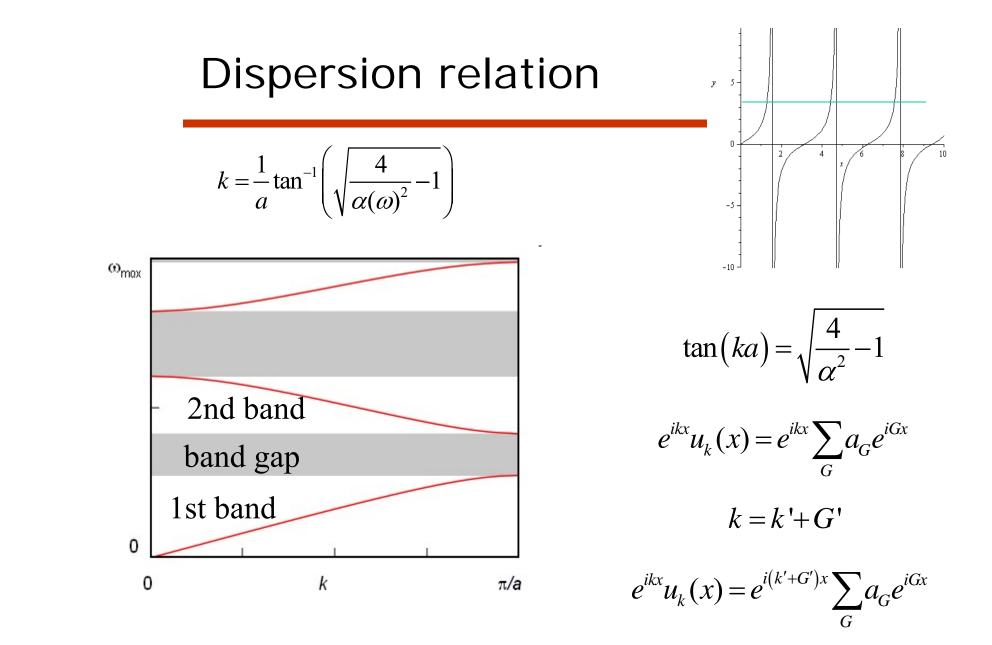
$$Te^{ikx}u_{k}(x) = e^{ik(x+a)}u_{k}(x+a) = e^{ika}e^{ikx}u_{k}(x)$$

Dispersion relation



Diffraction condition

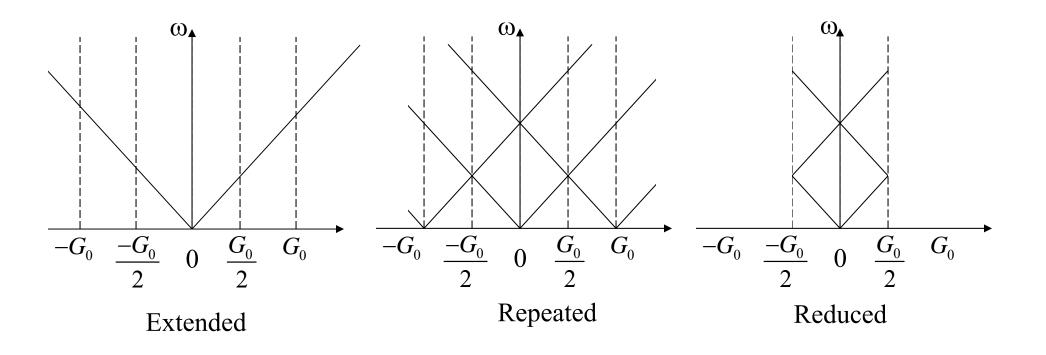




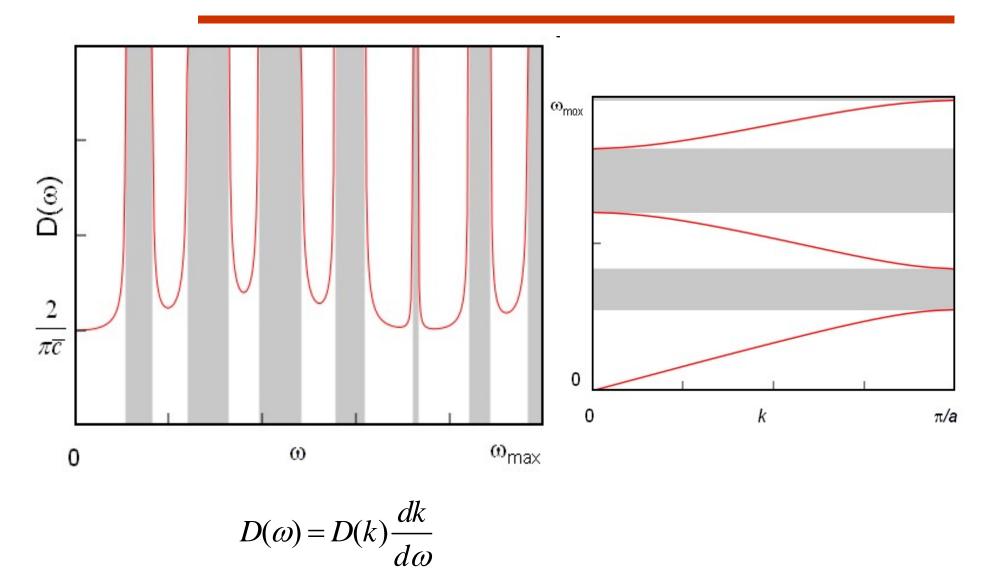
 $e^{ikx}u_k(x) = e^{ik'x}\sum_{G}a_G e^{i(G+G')x}$

There is only one *k*' in the first Brillouin zone and the convention is to use that one.

Zone schemes

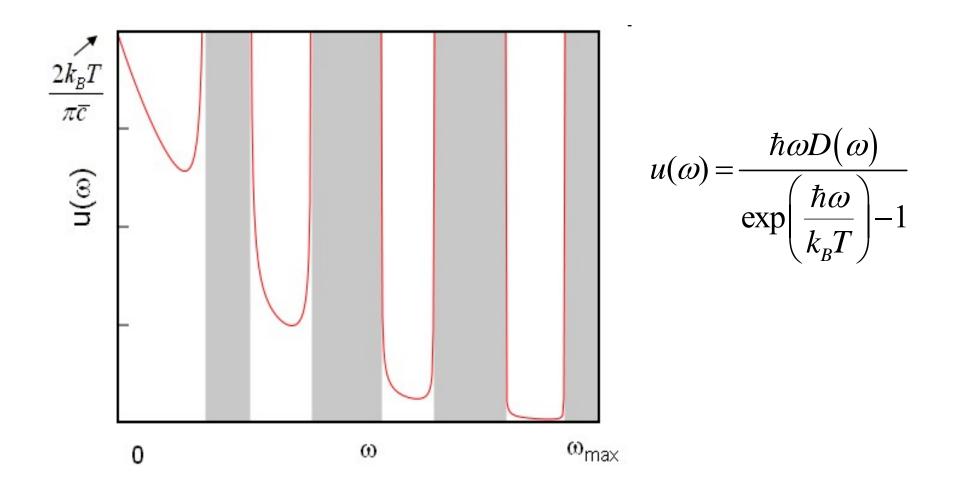


Density of states



The density of states can be determined from the dispersion relation.

Energy spectral density



Analog to the Planck radiation curve.

Thermodynamic quantities

 $u(\omega) = \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1}$

œ

toD(a)

 $DoS \rightarrow u(\omega)$

$$u(T) = \int_{0}^{0} \frac{\hbar\omega D(\omega)}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} d\omega \qquad \text{DoS} \to u(T)$$

Internal energy density:

Energy spectral density:

Helmholz free energy density:

$$f(T) = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega.$$
 DoS \rightarrow f(T)

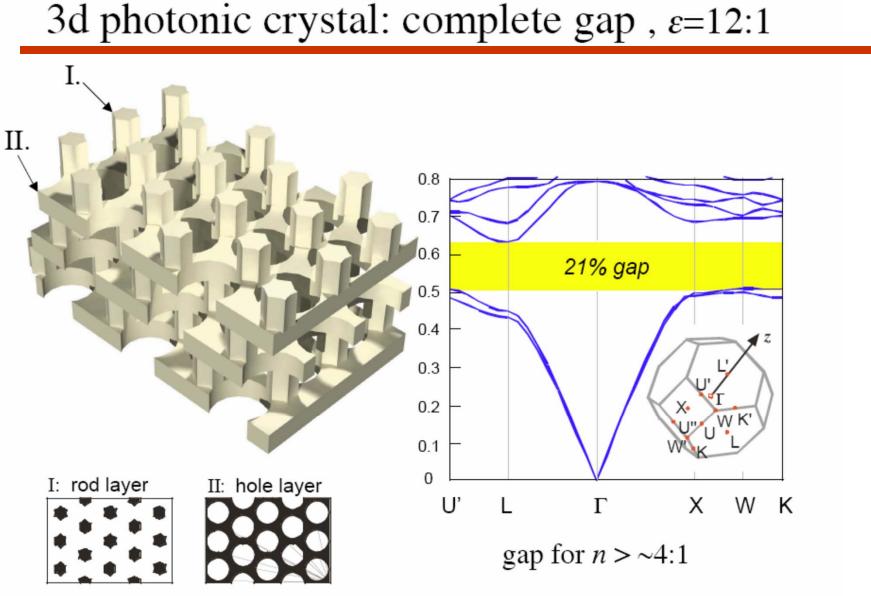
Entropy density:
$$s = -\frac{\partial f}{\partial T} = -k_B \int_0^\infty D(\omega) \left(\ln \left(1 - e^{-\hbar\omega/k_B T}\right) + \frac{\hbar\omega}{k_B T \left(1 - e^{\hbar\omega/k_B T}\right)} \right) d\omega$$

 $DoS \rightarrow s(T)$

$$c_{\nu} = \int \left(\frac{\hbar\omega}{T}\right)^2 \frac{D(\omega) \exp\left(\frac{\hbar\omega}{k_B T}\right)}{k_B \left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)^2} d\omega$$

Specific heat:

 $DoS \rightarrow cv(T)$



[S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]

http://ab-initio.mit.edu/photons/tutorial/L1-bloch.pdf

Home

Outline Introduction Molecules

Crystal Diffraction

Photons

Phonons

Electrons

Magnetism

Appendices

Lectures TUG students

Books

Making

< hide <

Crystal Structure

Crystal Binding

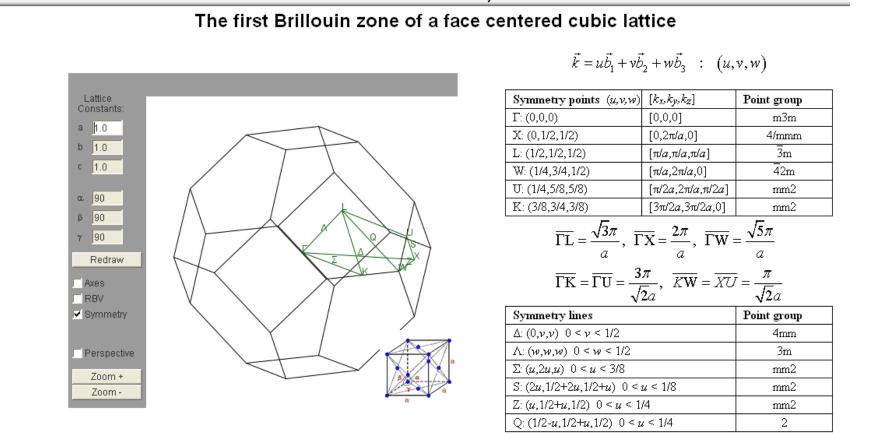
Energy bands

Crystal Physics Semiconductors

Exam questions

Student projects Skriptum

presentations



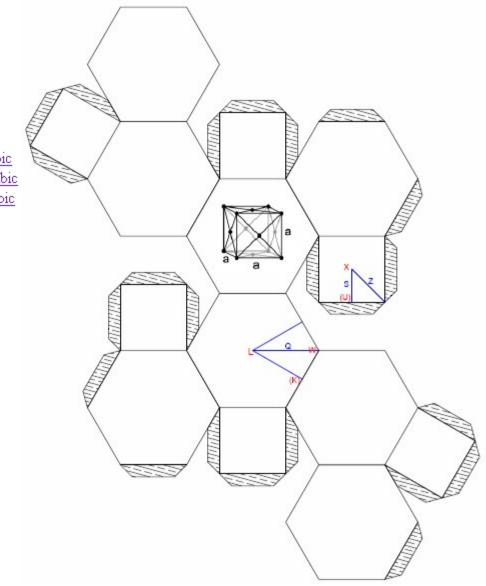
The real space and reciprocal space primitive translation vectors are:

$$\begin{split} \vec{a}_1 &= \frac{a}{2}(\hat{x} + \hat{z}), & \vec{a}_2 &= \frac{a}{2}(\hat{x} + \hat{y}), & \vec{a}_3 &= \frac{a}{2}(\hat{y} + \hat{z}), \\ \vec{b}_1 &= \frac{2\pi}{a}(\hat{k}_x - \hat{k}_y + \hat{k}_z), & \vec{b}_2 &= \frac{2\pi}{a}(\hat{k}_x + \hat{k}_y - \hat{k}_z), & \vec{b}_3 &= \frac{2\pi}{a}(-\hat{k}_x + \hat{k}_y + \hat{k}_z) \end{split}$$

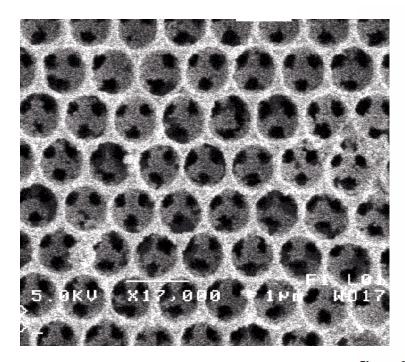
Cut-out patterns for Brillouin zones

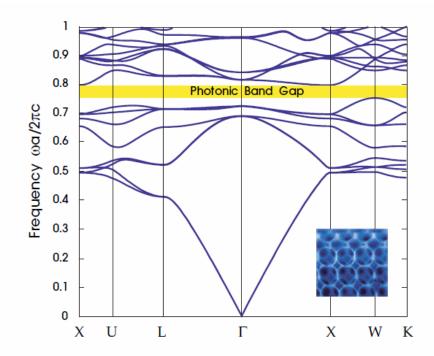
Cut-out patterns to make your own models of the Brillouin zones. The symmetry points are red and the symmetry lines are blue.

- simple cubic
- face centered cubic
- body centered cubic
- <u>hexagonal</u>
- tetragonal
- body centered tetragonal
- orthorhombic
- face centered orthorhombic
- body centered orthorhombic
- base centered orthorhombic



Inverse opal photonic crystal





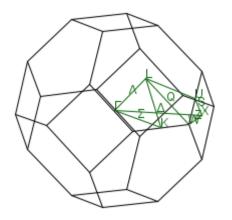


Figure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon = 13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.

http://ab-initio.mit.edu/book