



2020

## **Crystal Diffraction**

#### **Molecular and Solid State Physics**

**Oliver T. Hofmann, Institute of Solid State Physics** 

www.tugraz.at



## List of Symbols Used

| Symbol | Meaning                        |  |
|--------|--------------------------------|--|
| d      | Lattice plance distance        |  |
| E      | Electromagnetic field          |  |
| FT(x)  | Fourier transform (of x)       |  |
| G      | Reciprocal lattice vector      |  |
| h,k,l  | Miller indices (integers)      |  |
| I      | (wave) intensity               |  |
| k      | Reciprocal wave vector         |  |
| n      | Reflection order (integer)     |  |
| r      | Position (in real space)       |  |
| S      | Structure factor               |  |
| λ      | Wavelength                     |  |
| ρ      | Scattering probability density |  |
| Θ      | Scattering angle               |  |

2



## How Do We Describe Crystals?



| Periodicity: Lattice | Building blocks: Basis |  |
|----------------------|------------------------|--|
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |



## How Do We Describe Crystals?







## **Reciprocal Space**

$$\vec{b_1} = 2\pi \frac{\vec{a_2} \times \vec{a_3}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})} \quad \vec{b_2} = 2\pi \frac{\vec{a_3} \times \vec{a_1}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})} \quad \vec{b_3} = 2\pi \frac{\vec{a_1} \times \vec{a_2}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})}$$



### **Real Space**





## **Reciprocal Space**

6

$$\vec{b_1} = 2\pi \frac{\vec{a_2} \times \vec{a_3}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})} \quad \vec{b_2} = 2\pi \frac{\vec{a_3} \times \vec{a_1}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})} \quad \vec{b_3} = 2\pi \frac{\vec{a_1} \times \vec{a_1}}{\vec{a_1}(\vec{a_2} \times \vec{a_3})}$$









2020

## **Crystal Diffraction**

#### **Molecular and Solid State Physics**

**Oliver T. Hofmann, Institute of Solid State Physics** 

www.tugraz.at



## The Importance of Structure











### Historical experiment by Max von Laue, Nobel price 1914



Modified from: http://www.chemgapedia.de/vsengine/glossary/de/laue\_00045verfahren.glos.html







Modified from: http://www.chemgapedia.de/vsengine/glossary/de/laue\_00045verfahren.glos.html





















## <sup>16</sup> Implications of the Bragg-Picture

• Wavelength:  $\lambda < 2d$ 

| $n\lambda =$ | 2d | $\sin($ | $(\Theta)$ | ) |
|--------------|----|---------|------------|---|
|--------------|----|---------|------------|---|



## <sup>17</sup> Implications of the Bragg-Picture

• Wavelength:  $\lambda < 2d$ 

$$n\lambda = 2d\,\sin(\Theta)$$

Scattering is coherent and elastic

**Crystal Plane** 



## <sup>18</sup> Implications of the Bragg-Picture

• Wavelength:  $\lambda < 2d$ 



- Scattering is coherent and elastic
- No multiple scattering





## Implications of the Bragg-Picture

• Wavelength:  $\lambda < 2d$ 

$$n\lambda = 2d\,\sin(\Theta)$$

- Scattering is coherent and elastic
- No multiple scattering
- Many repeat units required, pentration probability





## Implications of the Bragg-Picture

• Wavelength:  $\lambda < 2d$ 

$$n\lambda = 2d\,\sin(\Theta)$$

- Scattering is coherent and elastic
- No multiple scattering
- Many repeat units required, pentration probability
- Needs to be performed for all lattice planes



## Solve in reciprocal space













different path with the same phase relation





To find constructive interference, we must be able to find a different path with the same phase relation







**Constructive interference if:**  $\vec{k'} - \vec{k} = \Delta \vec{k} = \vec{G}$ 







## Sanity check: Example

 $\frac{Bragg}{n\lambda = 2dsin(\Theta)}$ 



Measuring a simple cubic system with

- Wavelength I = 4.67Å.
- Reflection observed under  $\Theta$  = 45°







#### **Scattering on planes**





### Ray is scattered with a scattering probability density $\rho(r)$



#### **Scattering on planes**









## Autocorrelation Explained (Roughly)

"Everything is related to everything else"

 $\int \rho(r')\rho(r+r')d^3r'$ 





#### **Scattering on planes**





#### Autocorrelation function $\rightarrow$ square of Fourier transform

$$I(\Delta k) \propto |FT(\rho(r))|^2$$



#### **Scattering on planes**





# $\rho$ is a lattice periodic function of basis and lattice $I(\Delta k) \propto \left|FT(lattice \otimes basis)\right|^2$



#### **Scattering on planes**





# $\rho$ is a lattice periodic function of basis and lattice $I(\Delta k) \propto \left|FT(lattice) \cdot FT(basis)\right|^2$









$$FT(lattice) = \sum_{i} e^{i(\Delta k - G)r}$$

$$0 \text{ for } \Delta k \neq G$$
Laue condition
$$FT(basis) = \sum_{i} \int_{UC} \rho(r) e^{-iGr} d^3r$$

$$Structure \text{ factor } S_G$$

$$|S_G|^2 \text{ determines peak intensity}$$
corresponds to position of basis





$$FT(lattice) = \sum e^{i(\Delta k - G)r}$$

$$0 \text{ for } \Delta k \neq G$$
Laue condition
$$FT(basis) = \sum \int_{UC} \rho(r)e^{-iGr}d^3r$$

$$Structure \text{ factor } S_G$$

$$|S_G|^2 \text{ determines peak intensity}$$
corresponds to position of basis





## Ewald Construction a.k.a. "When we will see a peak?"



**TU** Graz

1) Setup reciprocal lattice

40

2) define 0,0 (on lattice point, arbitrary)



**TU** Graz

1) Setup reciprocal lattice

41

2) define 0,0 (on lattice point, arbitrary)



1) Setup reciprocal lattice

42

- 2) define 0,0 (on lattice point, arbitrary)
- 3) Incoming wave k (direction & length)
- 4)  $|k'| = |k| \rightarrow$  sphere (circle in 2D)



- 1) Setup reciprocal lattice
- 2) define 0,0 (on lattice point, arbitrary)
- 3) Incoming wave k (direction & length)
- 4)  $|\mathbf{k}'| = |\mathbf{k}| \rightarrow \text{sphere (circle in 2D)}$
- 5) Reflection observed if sphere hits point
- 6) Angle =  $2\Theta$
- 7) **∆k** = **G**

43





## **Experimental Setup for Diffraction**





## <u>Summary – Today's Concepts</u>

- **Bragg Diffraction:**  $n\lambda = 2dsin(\Theta)$
- Laue condition:  $\Delta \vec{k} = \vec{G}$
- General diffraction:  $I(\Delta k) \propto |FT(lattice) \cdot FT(basis)|^2$
- Structure factor:  $\int_{UC} \rho(r) e^{-iGr} d^3r = S_G$

## **Outlook for the Next Lecture:**

- Structure factor
- Ambiguity when choosing lattice & basis
- Solving diffraction patterns in practise

45



Modified from from: http://www.chemgapedia.de/vsengine/glossary/de/laue\_00045verfahren.glos.html





Modified from from: http://www.chemgaped.a.de/vsengine/glossary/de/laue\_00045verfahren.glos.html

Oliver Hofmann, Institute of Solid State Physics, TU Graz

#### 4/1/2020



47

## **Crystal Diffraction**



## Why Do We Need the Structure Factor?





## Why Do We Need the Structure Factor?





## A simplified example – 1D crystal



X

50



## A simplified example – 1D crystal



X

51

 $S_2 =$ 



## **Structure Factor in Practise**

Calculate electron density

52

• Sum over atoms & form factors:







## Inverse FT is not possible, because we loose the phase information

### To solve a diffraction pattern, crystal structures are proposed and their diffraction pattern is calculated. From there, the structure is iteratively refined

Oliver Hofmann, Institute of Solid State Physics, TU Graz

53



## **Example**

54

Measuring a simple cubic system with

- Wavelength  $\lambda = 4.67$ Å.
- Reflection observed under  $\theta = 45^{\circ}$

### What is the lattice constant of the crystal?





Measuring a simple cubic system with

- Wavelength  $\lambda = 4.67$ Å.
- Reflection observed under  $\theta = 45^{\circ}$





Measuring a simple cubic system with

• Wavelength  $\lambda = 4.67$ Å.

56

• Reflection observed under  $\theta = 45^{\circ}$ 

What is the lattice constant of the crystal?





ReciprocalDirectionVectorwavelenght(45 degrees)normalization

$$k' = \frac{2\pi}{\lambda} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{2}}$$

Direction changed by 90°



Measuring a simple cubic system with

• Wavelength  $\lambda = 4.67$ Å.

57

• Reflection observed under  $\theta = 45^{\circ}$ 





Measuring a simple cubic system with

• Wavelength  $\lambda = 4.67$ Å.

58

• Reflection observed under  $\theta = 45^{\circ}$ 





Measuring a simple cubic system with

• Wavelength  $\lambda = 4.67$ Å.

59

• Reflection observed under  $\theta = 45^{\circ}$ 





Measuring a simple cubic system with

• Wavelength  $\lambda = 4.67$ Å.

60

• Reflection observed under  $\theta = 45^{\circ}$ 







To find constructive interference, we must be able to find a different path with the same phase relation