

Technische Universität Graz

Institute of Solid State Physics

Crystal physics

Thermodynamic properties

$$d\epsilon_{ij} = \left(\frac{\partial \epsilon_{ij}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial \epsilon_{ij}}{\partial E_k}\right) dE_k + \left(\frac{\partial \epsilon_{ij}}{\partial H_l}\right) dH_l + \left(\frac{\partial \epsilon_{ij}}{\partial T}\right) dT$$

$$dP_i = \left(\frac{\partial P_i}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial P_i}{\partial E_k}\right) dE_k + \left(\frac{\partial P_i}{\partial H_l}\right) dH_l + \left(\frac{\partial P_i}{\partial T}\right) dT$$

$$s$$

$$dM_i = \left(\frac{\partial M_i}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial M_i}{\partial E_k}\right) dE_k + \left(\frac{\partial M_i}{\partial H_l}\right) dH_l + \left(\frac{\partial M_i}{\partial T}\right) dT$$

$$dS = \left(\frac{\partial S}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial S}{\partial E_k}\right) dE_k + \left(\frac{\partial S}{\partial H_l}\right) dH_l + \left(\frac{\partial S}{\partial T}\right) dT$$

$$13$$

$$14$$

$$15$$

$$16$$

- 1. Elastic deformation.
- 2. Reciprocal (or converse) piezo-electric effect.
- 3. Reciprocal (or converse) piezo-magnetic effect.
- 4. Thermal dilatation.
- 5. Piezo-electric effect.
- 6. Electric polarization.
- 7. Magneto-electric polarization.
- 8. Pyroelectricity.
- 9. Piezo-magnetic effect.
- 10. Reciprocal (or converse) magneto-electric polarization.
- 11. Magnetic polarization.
- 12. Pyromagnetism.
- 13. Piezo-caloric effect.
- 14. Electro-caloric effect.
- 15. Magneto-caloric effect.
- 16. Heat transmission.

Direct and reciprocal effects (Maxwell relations)

$$-\left(\frac{\partial^2 G}{\partial \sigma_{ij} \partial E_k}\right) = \left(\frac{\partial P_k}{\partial \sigma_{ij}}\right) = -\left(\frac{\partial^2 G}{\partial E_k \partial \sigma_{ij}}\right) = \left(\frac{\partial \epsilon_{ij}}{\partial E_k}\right) = d_{kij}$$
$$-\left(\frac{\partial^2 G}{\partial \sigma_{ij} \partial H_l}\right) = \left(\frac{\partial M_l}{\partial \sigma_{ij}}\right) = -\left(\frac{\partial^2 G}{\partial H_l \partial \sigma_{ij}}\right) = \left(\frac{\partial \epsilon_{ij}}{\partial H_l}\right) = q_{lij}$$
$$-\left(\frac{\partial^2 G}{\partial E_k \partial H_l}\right) = \left(\frac{\partial M_l}{\partial E_k}\right) = -\left(\frac{\partial^2 G}{\partial H_l \partial E_k}\right) = \left(\frac{\partial P_k}{\partial H_l}\right) = \lambda_{lk}$$
$$-\left(\frac{\partial^2 G}{\partial \sigma_{ij} \partial T}\right) = \left(\frac{\partial S}{\partial \sigma_{ij}}\right) = -\left(\frac{\partial^2 G}{\partial T \partial \sigma_{ij}}\right) = \left(\frac{\partial \epsilon_{ij}}{\partial T}\right) = \alpha_{ij}$$
$$-\left(\frac{\partial^2 G}{\partial T \partial E_k}\right) = \left(\frac{\partial P_k}{\partial T}\right) = -\left(\frac{\partial^2 G}{\partial E_k \partial T}\right) = \left(\frac{\partial S}{\partial E_k}\right) = p_k$$
$$-\left(\frac{\partial^2 G}{\partial T \partial H_l}\right) = \left(\frac{\partial M_l}{\partial T}\right) = -\left(\frac{\partial^2 G}{\partial H_l \partial T}\right) = \left(\frac{\partial S}{\partial H_l}\right) = m_l.$$

Useful to check for errors in experiments or calculations

Point Groups

Crystals can have symmetries: rotation, reflection, inversion,...

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Symmetries can be represented by matrices.

All such matrices that bring the crystal into itself form the group of the crystal.

$$AB \in G \text{ for } A, B \in \mathbf{G}$$

32 point groups (one point remains fixed during transformation) 230 space groups

Space Group	Bravais Lattice		
1	Triclinic		
2	Triclinic		
3	Simple Monoclinic		
4	Simple Monoclinic		
5	Base-Centered Monoclinic		
6	Simple Monoclinic		
7	Simple Monoclinic		
8	Base-Centered Monoclinic		
9	Base-Centered Monoclinic		
10	Simple Monoclinic		
11	Simple Monoclinic		
12	Base-Centered Monoclinic		
13	Simple Monoclinic		
14	Simple Monoclinic		
15	Base-Centered Monoclinic		
16	Simple Orthorhombic		
17	Simple Orthorhombic		
18	Simple Orthorhombic		
19	Simple Orthorhombic		
20	Base-Centered Orthorhombic		
21	Base-Centered Orthorhombic		
22	Face-Centered Orthorhombic		
23	Body-Centered Orthorhombic		
24	Body-Centered Orthorhombic		
25	Simple Orthorhombic		
26	Simple Orthorhombic		
27	Simple Orthorhombic		

http://lampx.tugraz.at/~hadley/ss1/crystalstructure/sg2bravais.html

Cyclic groups

http://en.wikipedia.org/wiki/Cyclic_group

Pyroelectricity 7

$$\tau_i = - \left(\frac{\partial^2 G}{\partial E_i \partial T} \right)$$

Pyroelectricity is described by a rank 1 tensor

$$\pi_{i} = \frac{\partial P_{i}}{\partial T}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \pi_{x} \\ \pi_{y} \\ \pi_{z} \end{bmatrix} = \begin{bmatrix} \pi_{x} \\ \pi_{y} \\ -\pi_{z} \end{bmatrix} \Rightarrow \begin{bmatrix} \pi_{x} \\ \pi_{y} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \pi_{x} \\ \pi_{y} \\ \pi_{z} \end{bmatrix} = \begin{bmatrix} -\pi_{x} \\ -\pi_{y} \\ -\pi_{z} \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Pyroelectricity

Quartz, ZnO, LaTaO₃

example Turmalin: point group 3m for $\Delta T = 1^{\circ}$ C, $\Delta E \sim 7 \cdot 10^4$ V/m

Pyroelectrics have a spontaneous polarization. If it can be reversed by an electric field they are called Ferroelectrics ($BaTiO_3$)

Pyroelectrics are at Joanneum research to make infrared detectors (to detect humans).

10 Pyroelectric crystal classes: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm

$$P_{i} = \chi_{ij}E_{j}$$

$$\begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix} = \begin{bmatrix} \chi_{xx} & \chi_{xy} & \chi_{xz} \\ \chi_{yx} & \chi_{yy} & \chi_{yz} \\ \chi_{zx} & \chi_{zy} & \chi_{zz} \end{bmatrix} \begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix}$$

Transforming P and E by a crystal symmetry must leave the susceptibility tensor unchanged

$$U\vec{P} = \chi U\vec{E} \qquad \qquad U^{-1}U\vec{P} = U^{-1}\chi U\vec{E} \qquad \qquad \chi = U^{-1}\chi U$$

If rotation by 180 about the *z* axis is a symmetry,

$$U = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad U^{-1} = U = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad U^{-1} \chi U = \begin{bmatrix} \chi_{xx} & \chi_{xy} & -\chi_{xz} \\ \chi_{yx} & \chi_{yy} & -\chi_{yz} \\ -\chi_{zx} & -\chi_{zy} & \chi_{zz} \end{bmatrix}$$

$$\chi_{xz} = \chi_{yz} = \chi_{zx} = \chi_{zy} = 0$$

The 32 Crystal Classes

Crystal system	Crystal Class	International symbol	Schoenflies symbol	Space groups	2-fold axes	3-fold axes	4-fold axes	6-fold axes	mirror planes	inversion	Examples	N syı ele
$\begin{array}{c} \text{Triclinic} \\ a \neq b \neq c \\ \alpha \neq \beta \neq \gamma \end{array}$	triclinic-pedial	1	C_1	1		2	<u>.</u>	<u>(200</u> 4)	4	n		
α β	triclinic- pinacoidal	ī	$S_2 = C_1$	2	3 3 -3	-	-		-	у		
$ Monoclinic a \neq b \neq c a \neq 90^\circ, $	monoclinic- sphenoidal	2	C ₂	3-5	1	-	-	37 - 2	-	n		
$\beta = \gamma = 90^{\circ}$	monoclinic- domatic	m	$C_{1h} = C_s$	6-9	200	Ţ.	87	10 0 0	1	n		
α β	monoclinic- prismatic	2/m	C_{2h}	10-15	1	-	-	-	1	у		
Orthorhombic $a \neq b \neq c$	orthorhombic- disphenoidal	222	<i>V</i> = <i>D</i> ₂	16-24	3	÷	<u>.</u>	<u>(2025)</u>	4	n		
$\alpha = \beta = \gamma = 90^{\circ}$	orthorhombic- pyramidal	mm2	C_{2v}	25-46	1	-	-		2	n		
a h											47: YBa2Cu3O7-x	

http://lamp.tu-graz.ac.at/~hadley/ss2/crystalphysics/crystalclasses/crystalclasses.html

Cubic crystals

All second rank tensors of cubic crystals reduce to constants

Electrical conductivity, thermal conductivity, electric susceptibility, magnetic susceptibility, Peltier effect (heat current due to electrical current), Seebeck effect (Electric field due to thermal gradient)

Material 🔶	ρ (Ω•m) at 20 °C	σ (S/m) at 20 °C	Temperature coefficient ^[note 1] (K ⁻¹)	Reference
Silver	1.59×10 ⁻⁸	6.30×10 ⁷	0.0038	[7][8]
Copper	1.68×10 ⁻⁸	5.96×10 ⁷	0.0039	[8]
Annealed copper ^[note 2]	1.72×10 ^{−8}	5.80×10 ⁷		[citation needed]
Gold ^[note 3]	2.44×10 ⁻⁸	4.10×10 ⁷	0.0034	[7]
Aluminium ^[note 4]	2.82×10 ⁻⁸	3.5×10 ⁷	0.0039	[7]
Calcium	3.36×10 ⁻⁸	2.98×10 ⁷	0.0041	
Tungsten	5.60×10 ⁻⁸	1.79×10 ⁷	0.0045	[7]
Zinc	5.90×10 ⁻⁸	1.69×10 ⁷	0.0037	[9]
Nickel	6.99×10 ⁻⁸	1.43×10 ⁷	0.006	
Lithium	9.28×10 ⁻⁸	1.08×10 ⁷	0.006	
Iron	1.0×10 ^{−7}	1.00×10 ⁷	0.005	[7]
Platinum	1.06×10 ⁻⁷	9.43×10 ⁶	0.00392	[7]
Tin	1.09×10 ⁻⁷	9.17×10 ⁶	0.0045	
Carbon steel (1010)	1.43×10 ⁻⁷	6.99×10 ⁶		[10]
Lead	2.2×10 ^{−7}	4.55×10 ⁶	0.0039	[7]
Titanium	4.20×10 ⁻⁷	2.38×10 ⁶	х	
Grain oriented electrical steel	4.60×10 ⁻⁷	2.17×10 ⁶		[11]
Manganin	4.82×10 ⁻⁷	2.07×10 ⁶	0.000002	[12]
Constantan	4.9×10 ⁻⁷	2.04×10 ⁶	0.000008	[13]
Stainless steel ^[note 5]	6.9×10 ^{−7}	1.45×10 ⁶		[14]
Mercury	9.8×10 ⁻⁷	1.02×10 ⁶	0.0009	[12]
Nichrome ^[note 6]	1.10×10 ⁻⁶	9.09×10 ⁵	0.0004	[7]
GaAs	5×10 ⁻⁷ to 10×10 ⁻³	5×10 ⁻⁸ to 10 ³		[15]
Carbon (amorphous)	5×10 ⁻⁴ to 8×10 ⁻⁴	1.25 to 2×10 ³	-0.0005	[7][16]
Carbon (graphite) ^[note 7]	2.5e×10 ⁻⁶ to 5.0×10 ⁻⁶ //basal plane 3.0×10 ⁻³ ⊥basal plane	2 to 3×10 ⁵ //basal plane 3.3×10 ² ⊥basal plane		[17]
Carbon (diamond) ^[note 8]	1×10 ¹²	~10 ⁻¹³		[18]
Germanium ^[note 8]	4.6×10 ⁻¹	2.17	-0.048	[7][8]
Sea water ^[note 9]	2×10 ⁻¹	4.8		[19]
Diality in finate 101	2 401 - 2 403	F 40-4, F 40-2		Icitation needed]

Piezoelectricity (rank 3 tensor)

AFM's, STM's Quartz crystal oscillators Surface acoustic wave generators Pressure sensors - Epcos Fuel injectors - Bosch Inkjet printers

No inversion symmetry

lead zirconate titanate (Pb[Zr_xTi_{1-x}]O₃ 0<x<1) —more commonly known as PZT barium titanate (BaTiO₃) lead titanate (PbTiO₃) potassium niobate (KNbO₃) lithium niobate (LiNbO₃) lithium tantalate (LiTaO₃) sodium tungstate (Na₂WO₃) Ba₂NaNb₅O₅ Pb₂KNb₅O₁₅

Piezoelectric crystal classes: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m

Symmetric Tensors

$$\chi^E_{ij} = \frac{\partial P_i}{\partial E_j} = -\frac{\partial^2 G}{\partial E_i \partial E_j} = \frac{\partial P_j}{\partial E_i} = \chi^E_{ji}$$

g_{11}	g_{12}	g_{13}
g_{12}	g_{22}	g_{23}
g_{13}	g_{23}	g_{33}

Tensor notation

We need a way to represent 3rd and 4th rank tensors in 2-d.

rank 3

rank 4

 $g_{36} \rightarrow g_{312}$

 $g_{14} \rightarrow g_{1123}$

rank 2 symmetric tensors ²	rank 2 asymmetric tensors	rank 3 tensors ³	rank 4 tensors
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left[\begin{array}{cccc}g_{11}&g_{12}&g_{13}\\g_{21}&g_{22}&g_{23}\\g_{31}&g_{32}&g_{33}\end{array}\right]$	g11 g12 g13 g14 g15 g16 g21 g22 g23 g24 g25 g26 g31 g32 g33 g34 g35 g36 reduced, symmetric, asymmetric	g11 g12 g13 g14 g15 g16 g21 g22 g23 g24 g25 g26 g31 g22 g33 g34 g35 g26 g31 g32 g33 g34 g35 g36 g41 g42 g33 g44 g45 g46 g51 g32 g33 g54 g55 g56 g63 g62 g63 g64 g65 g66 g63 g62 g63 g64 g65 g66 g63 g64 g65 g66 g66 g66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{cccc}g_{11}&g_{12}&g_{13}\\g_{21}&g_{22}&g_{23}\\g_{31}&g_{32}&g_{33}\end{array}\right]$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 reduced, symmetric, asymmetric 0 0 0 0	g11 g12 g13 g14 g15 g16 g21 g22 g23 g24 g25 g26 g31 g22 g33 g34 g35 g26 g31 g32 g33 g34 g35 g26 g31 g32 g33 g34 g35 g26 g31 g32 g33 g34 g35 g46 g30 g32 g33 g34 g35 g46 g41 g42 g43 g44 g45 g46 g43 g42 g43 g45 g46 g46 g44 g42 g43 g46 g46 g46
	$\left[\begin{array}{rrrr} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{array}\right]$	$\begin{bmatrix} 0 & 0 & 0 & g_{14} & g_{15} & 0 \\ 0 & 0 & 0 & g_{24} & g_{25} & 0 \\ g_{31} & g_{32} & g_{33} & 0 & 0 & g_{36} \\ \end{bmatrix}$ reduced, symmetric, asymmetric	g11 g12 g13 0 0 g16 g21 g22 g23 0 0 g26 g31 g32 g33 0 0 g36 g33 g32 g33 0 0 g36 g33 g32 g33 0 0 g36 g43 g42 g43 0 0 g46 g43 g42 g43 0 0 g46 reduced, symmetric, asymmetric asymmetric
$\begin{bmatrix} g_{11} & g_{12} & 0 \\ g_{12} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{bmatrix}$	$\left[\begin{array}{rrrr} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{array}\right]$	$\begin{bmatrix} g_{11} & g_{12} & g_{13} & 0 & 0 & g_{16} \\ g_{21} & g_{22} & g_{23} & 0 & 0 & g_{26} \\ 0 & 0 & 0 & g_{34} & g_{35} & 0 \end{bmatrix}$ reduced, symmetric, asymmetric	g11 g12 g13 0 0 g16 g21 g22 g23 0 0 g26 g31 g32 g33 0 0 g26 g01 0 0 g44 g45 0 0 0 0 g44 g45 0 g61 g62 g63 0 0 g66 reduced, symmetric, asymmetric asymmetric
	$\left[\begin{array}{rrrr} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{array}\right]$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 reduced, symmetric, asymmetric	g11 g12 g13 0 g16 g21 g22 g23 0 0 g26 g31 g32 g33 0 0 g26 g31 g32 g33 0 0 g26 g31 g32 g33 0 0 g96 0 0 0 g44 g45 0 0 0 0 g54 g55 0 g61 g62 g63 0 0 g66 reduced, symmetric, asymmetric asymmetric
rank 2 symmetric tensors ²	rank 2 asymmetric tensors	rank 3 tensors ³	rank 4 tensors
	$\left[\begin{array}{rrrr} g_{11} & 0 & 0 \\ 0 & g_{22} & 0 \\ 0 & 0 & g_{33} \end{array}\right]$	$\begin{bmatrix} 0 & 0 & 0 & g_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & g_{25} & 0 \\ 0 & 0 & 0 & 0 & 0 & g_{36} \end{bmatrix}$ reduced, symmetric, asymmetric	g11 g12 g13 0 0 0 g21 g22 g23 0 0 0 g31 g32 g33 0 0 0 g31 g32 g33 0 0 0 0 0 0 g44 0 0 reduced, symmetric, asymmetric asymmetric

http://lamp.tu-graz.ac.at/~hadley/ss2/crystalphysics/crystalclasses/crystalclasses.html

Technische Universität Graz

Institute of Solid State Physics

Semiconductors

Silicon

- Important semiconducting material
- 2nd most common element on earths crust (rocks, sand, glass, concrete)
- Often doped with other elements
- Oxide SiO₂ is a good insulator

silicon crystal = diamond crystal structure

L: 0

K: 0 show HKL plane hide HKL plane draw atoms in HKL plane

The conventional unit cell is a cube with sides of 0.543 nm. There are 8 atoms atoms in the conventional unit cell. (The

H: 1

Thickness of HKL planes:

	513.160 Microelectronics and Micromechanics							
tome Dutline								
oks tures	Silicon is the second most common element in the earth's crust and an important semiconducting material.							
erials								
Student projects Structural properties								
	Crystal structure: Diamond							
	Bravais lattice: face centered cubic							
	Space group: 227 (F d -3 m), Strukturbericht: A4, Pearson symbol: cF8							
	Point group: m3m (O_h) six 2-rold rotations, four 3-rold rotations, three 4-rold rotations, nine mirror planes, inversion							
	Lattice constant: $a = 0.543$ nm A terris weight 28.00							
	Atomic weight 28.09 Atomic density $n_{\rm eff} = -4.005 \times 10^{22} 1/cm^3$							
	Atomic density $n_{atoms} = 4.993 \times 10^{-17} \text{ m}^2$							
	Density of surface atoms							
	$(100) 6.78 \times 10^{14} 1/cm^2$							
	(110) 9 59 × 10 ¹⁴ 1/cm ²							
	$(111) 7.83 \times 10^{14} \ 1/cm^2$							
	a=5.430Å							
	b=5.430Å							
	c=5.430A							
	$\beta=90.000^{\circ}$							
	γ=90.000° 2x2x2 3x3x3 5x5x5							
	Ball and Stick Spacefill							

Technische Universität Graz

Semiconductors

Absorption and emission of photons

Direct bandgap semiconductors are used for optoelectronics

Semiconductors

Material	Wavelength (nm)		
InAsSbP/InAs	4200		
InAs	3800		
GaInAsP/GaSb	2000		
GaSb	1800		
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600		
Ga _{0.47} In _{0.53} As	1550		
Ga _{0.27} In _{0.73} As _{0.63} P _{0.37}	1300		
GaAs:Er,InP:Er	1540		
Si:C	1300		
GaAs:Yb,InP:Yb	1000		
Al _r Ga _{1-r} As:Si	650-940		
GaAs:Si	940		
Al _{0.11} Ga _{0.89} As:Si	830		
Al _{0.4} Ga _{0.6} As:Si	650		
GaAs _{0.6} P _{0.4}	660		
GaAs _{0.4} P _{0.6}	620		
$GaAs_{0.15}P_{0.85}$	590		
$(Al_rGa_{1-r})_{0.5}In_{0.5}P$	655		
GaP	690		
GaP:N	550-570		
Ga _r In _{1-r} N	340,430,590		
SiC	400-460		
BN	260,310,490		

TABLE 1Common III-V materials used to produceLEDs and their emission wavelengths.

Light emitting diodes

GaN

Silicon

http://www.matprop.ru/Si_bandstr#Basic

Conduction band minimum

Minimum of the conduction band

Near the conduction band minimum, the bands are approximately parabolic.

Effective mass

The parabola at the bottom of the conduction band does not have the same curvature as the free-electron dispersion relation. We define an effective mass to characterize the conduction band minimum.

$$m^* = \frac{\hbar^2}{\frac{d^2 E(\vec{k})}{dk_x^2}}$$

This effective mass is used to describe the response of electrons to external forces in the particle picture.

Top of the valence band

In the valence band, the effective mass is negative.

Charge carriers in the valence band are positively charged holes.

 $m_{h}^{*} = \text{effective mass of holes}$

$$m_h^* = \frac{-\hbar^2}{\frac{d^2 E(\vec{k})}{dk_x^2}}$$

Holes

A completely filled band does not contribute to the current.

$$\vec{j} = \int_{\text{filled states}} -e\vec{v}(\vec{k})D(\vec{k})f(\vec{k})d\vec{k}$$
$$= \int_{\text{band}} -e\vec{v}(\vec{k})D(\vec{k})f(\vec{k})d\vec{k} - \int_{\text{empty states}} -e\vec{v}(\vec{k})D(\vec{k})f(\vec{k})d\vec{k}$$
$$= \int_{\text{empty states}} e\vec{v}(\vec{k})D(\vec{k})f(\vec{k})d\vec{k}$$

Holes have a positive charge and a positive mass.

Effective Mass

