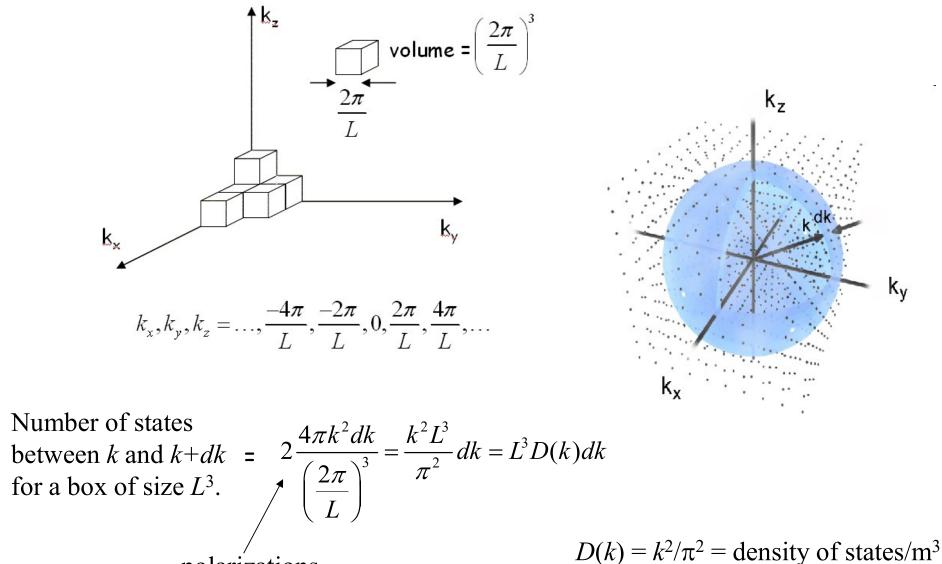


Technische Universität Graz

Institute of Solid State Physics

Photons

Density of states

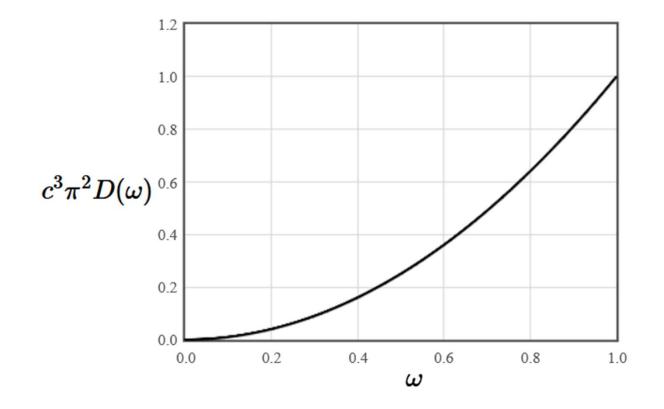


polarizations

Density of states

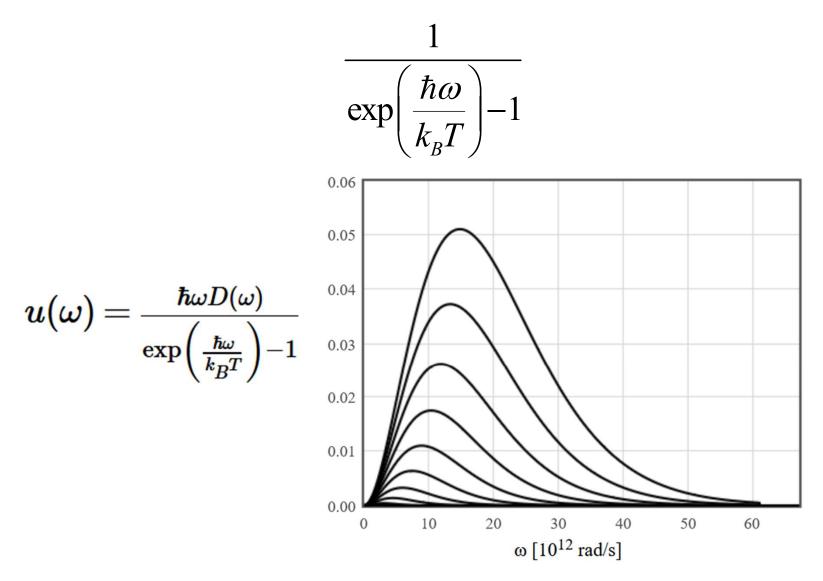
The number of states per unit volume with a frequency between ω and $\omega + d\omega$ is,

$$D(\omega)d\omega = \frac{\omega^2}{c^3\pi^2}d\omega.$$

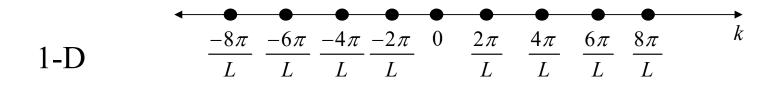


Photons are Bosons

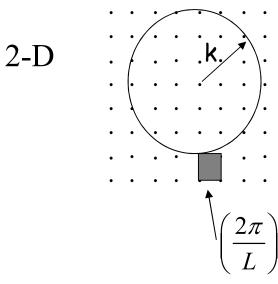
The mean number of bosons is given by the Bose-Einstein factor.



Density of states



Number of states between |k| and $|k|+dk = LD(k)dk = 2 \cdot 2 \cdot \frac{dk}{2\pi}$ for a line of size L. polarizations +/-k $D(k) = \frac{2}{\pi}$

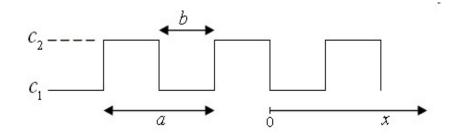


Number of states between |k| and $|k|+dk = L^2 D(k)dk = 2\frac{2\pi k \ dk}{\left(\frac{2\pi}{2\pi}\right)^2}$ for an area of size L^2 .

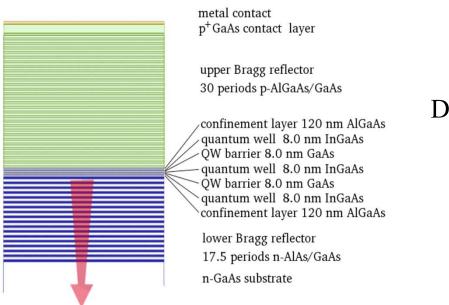
$$D(k) = \frac{k}{\pi} \qquad [\text{m}^{-1}]$$

	1-D	2-D	3-D
Wave Equation c = speed of light $A_j = j^{\text{th}}$ component of the vector potential	$c^2 \frac{d^2 A_j}{dx^2} = \frac{d^2 A_j}{dt^2}$	$c^{2}\left(\frac{d^{2}A_{j}}{dx^{2}} + \frac{d^{2}A_{j}}{dy^{2}}\right) = \frac{d^{2}A_{j}}{dt^{2}}$	$c^{2}\left(\frac{d^{2}A_{j}}{dx^{2}} + \frac{d^{2}A_{j}}{dy^{2}} + \frac{d^{2}A_{j}}{dz^{2}}\right) = \frac{d^{2}A_{j}}{dt^{2}}$
Eigenfunction solutions k = wavenumber $\omega =$ angular frequency	$A_{j} = \exp\left(i\left(kx - \alpha t\right)\right)$	$A_{j} = \exp\left(i\left(\vec{k}\cdot\vec{r} - \boldsymbol{\omega}t\right)\right)$	$A_{j} = \exp\left(i\left(\vec{k}\cdot\vec{r} - \alpha t\right)\right)$
Dispersion relation	$\omega = ck$	$\omega = c \left \vec{k} \right $	$\omega = c \left \vec{k} \right $
Density of states	$D(k) = \frac{2}{\pi}$	$D(k) = \frac{k}{\pi} \qquad [\mathbf{m}^{-1}]$	$D(k) = \frac{k^2}{\pi^2} \qquad [\mathbf{m}^{-2}]$
Density of states $D(\omega) = D(k) \frac{dk}{d\omega}$	$D(\omega) = \frac{2}{\pi c}$ [s/m]	$D(\omega) = \frac{\omega}{\pi c^2} [s/m^2]$	$D(\boldsymbol{\omega}) = \frac{\boldsymbol{\omega}^2}{\pi^2 c^3} \qquad [s/m^3]$
Density of states $D(\lambda) = D(k) \frac{dk}{d\lambda}$ $\lambda = \text{wavelength}$	$D(\lambda) = \frac{4}{\lambda^2} [\mathbf{m}^{-2}]$	$D(\lambda) = \frac{4\pi}{\lambda^3} [\mathrm{m}^{-3}]$	$D(\lambda) = \frac{8\pi}{\lambda^4} [\mathrm{m}^{-4}]$
Density of states $D(E) = D(\omega) \frac{d\omega}{dE}$	$D(E) = \frac{2}{\pi \hbar c} \qquad [\mathbf{J}^{-1}\mathbf{m}^{-1}]$	$D(E) = \frac{E}{\pi \hbar^2 c^2} \qquad [\mathbf{J}^{-1}\mathbf{m}^{-2}]$	$D(E) = \frac{E^2}{\pi^2 \hbar^3 c^3} \qquad [\mathbf{J}^1 \mathbf{m}^{-3}]$
Chemical potential	$\mu = 0$	μ=0	$\mu = 0$
Intensity spectral density $k_B = 1.3806504 \times 10^{-23}$ [J/K] Boltzmann's constant $h = 6.62606896 \times 10^{-34}$ [J s] Planck's constant	$\mu = 0$ $I(\lambda) = \frac{2hc^2}{\lambda^3 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} \qquad [J \text{ m}^{-1}\text{s}^{-1}]$	$\mu = 0$ $I(\lambda) = \frac{4hc^2}{\lambda^4 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1\right)} [J \text{ m}^{-2}\text{s}^{-1}]$	$\mu = 0$ $I(\lambda) = \frac{2\pi hc^2}{\lambda^5 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} [J m^{-3} s^{-1}]$
Wien's law $\frac{dI(\lambda)}{d\lambda}\Big _{\lambda=\lambda_{max}} = 0$	$\lambda_{\rm max} = \frac{0.0050994367}{\rm T}$ [m]	$\lambda_{\rm max} = \frac{0.0036696984}{\rm T}$ [m]	$\lambda_{\rm max} = \frac{0.002897707138}{\rm T}$ [m]
Stefan - Boltzmann law $I = \int_{0}^{\infty} I(\lambda) d\lambda$ $\zeta(3) \approx 1.202 \text{ Riemann } \zeta \text{ function}$ $\sigma = 5.67 \times 10^{-8} \text{ Stefan-Boltzmann constant}$	$I = \frac{\pi^2 k_B^2 T^2}{3h} \qquad [J s^{-1}]$	$I = \frac{8\zeta(3)k_B^{3}T^{3}}{h^2c} [J \text{ m}^{-1} \text{ s}^{-1}]$	$I = \frac{2\pi^{5}k_{B}^{4}T^{4}}{15c^{2}h^{3}} = \sigma T^{4} \qquad [J \text{ m}^{-2} \text{ s}^{-2}]$
Internal energy distribution $u(\lambda) = \frac{hc}{\frac{\lambda}{B}} \cdot \frac{D(\lambda)}{\exp\left(\frac{hc}{\lambda k_B T}\right) - 1}$	$u(\lambda) = \frac{4hc}{\lambda^3 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} [J/m^2]$	$u(\lambda) = \frac{4\pi hc}{\lambda^4 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1\right)} [J/m^3]$	$u(\lambda) = \frac{8\pi hc}{\lambda^{5} \left(\exp\left(\frac{hc}{\lambda k_{B}T}\right) - 1 \right)} \qquad [J/m^{4}]$
Internal energy $u = \int_{0}^{\infty} u(\lambda) d\lambda$	$u = \frac{2\pi^2 k_B^2 T^2}{3hc} [J/m]$	$u = \frac{8\varsigma(3)\pi k_B^{3}T^{3}}{h^2c^2} [J/m^2]$	$u = \frac{4\sigma T^4}{c} \qquad [J/m^3]$

Light in a layered material



The dielectric constant and speed of light are different for the two layers.



Distributed Bragg reflector

Light in a layered material

Wave equation in a periodic medium

$$c^{2}(x)\frac{\partial^{2}A_{j}}{\partial x^{2}} = \frac{\partial^{2}A_{j}}{\partial t^{2}}$$

Separation of variables $A_i(x,t) = \xi$

$$A_j(x,t) = \xi(x)e^{-i\omega t}$$

Hill's equation

$$\frac{d^2\xi(x)}{dx^2} = -\frac{\omega^2}{c^2(x)}\xi(x)$$

Normal modes don't have a clearly defined wavelength.

2nd order linear differential equation with periodic coefficients. Mathematically equivalent to the time independent Schrödinger equation.

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = \left(E - V(x)\right)\psi(x)$$

Differential equations

The solutions to a linear differential equation with constant coefficients,

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = d,$$

have the form,

The solutions to a linear differential equation with periodic coefficients,

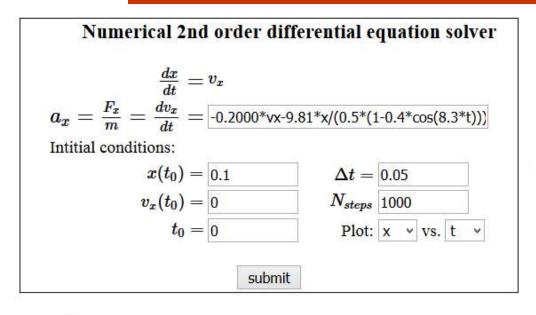
 $e^{\lambda x}$

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + c(x)y = d,$$

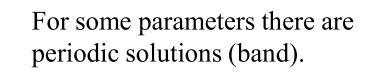
have the form,

$$e^{ikx}u_k(x)$$
 where $u_k(x) = u_k(x+a)$

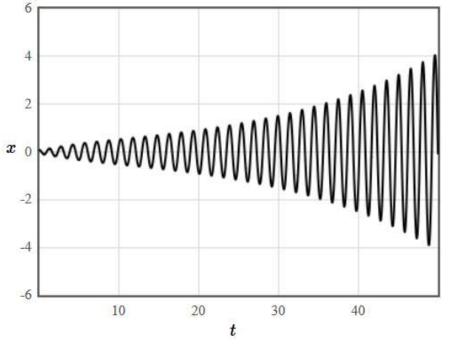
Swing



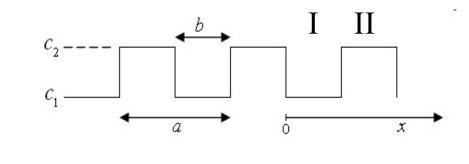
$$mrac{d^2x}{dt^2}+brac{dx}{dt}+rac{mg}{l(1-A\cos(\omega t))}x=0.$$

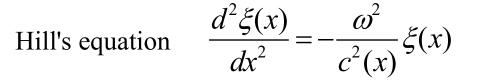


For some parameters there are exponentially growing and decaying solutions (bandgap).



Light in a layered material





In region I, the solutions are $\sin(\omega x/c_1)$ and $\cos(\omega x/c_1)$. In region II, the solutions are $\sin(\omega x/c_2)$ and $\cos(\omega x/c_2)$. Match the solutions at the boundaries.

Normal modes don't have a clearly defined wavelength.

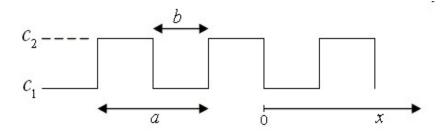
Translational symmetry

The normal modes are eigenfunctions of the translation operator

The normal modes have Bloch form.

$$\xi(x) = e^{ikx} u_k(x) \qquad \text{where} \qquad u_k(x) = u_k(x + a)$$

$$Te^{ikx}u_k(x) = e^{ik(x+a)}u_k(x+a) = e^{ika}e^{ikx}u_k(x)$$



Solutions in region I and region II

Two linearly independent solutions are specified by the boundary conditions

$$\xi_1(0) = 1, \quad \xi_1'(0) = 0, \quad \xi_2(0) = 0, \quad \xi_2'(0) = 1$$

In region I,

$$\xi_1(x) = \cos\left(\frac{\omega x}{c_1}\right), \qquad \qquad \xi_2(x) = \frac{c_1}{\omega}\sin\left(\frac{\omega x}{c_1}\right)$$

In region II,

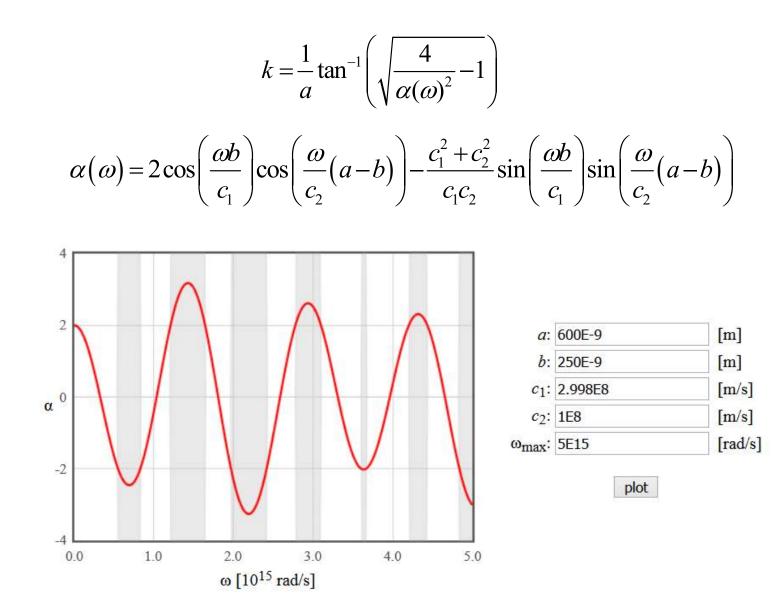
$$\xi_{1}(x) = \cos\left(\frac{\omega b}{c_{1}}\right)\cos\left(\frac{\omega}{c_{2}}(x-b)\right) - \frac{c_{2}}{c_{1}}\sin\left(\frac{\omega b}{c_{1}}\right)\sin\left(\frac{\omega}{c_{2}}(x-b)\right),$$

$$\xi_{2}(x) = \frac{c_{1}}{\omega}\sin\left(\frac{\omega b}{c_{1}}\right)\cos\left(\frac{\omega}{c_{2}}(x-b)\right) + \frac{c_{2}}{\omega}\cos\left(\frac{\omega b}{c_{1}}\right)\sin\left(\frac{\omega}{c_{2}}(x-b)\right)$$

$$\begin{bmatrix} \xi_1(x+\alpha) \\ \xi_2(x+\alpha) \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} \xi_1(x) \\ \xi_2(x) \end{bmatrix}.$$

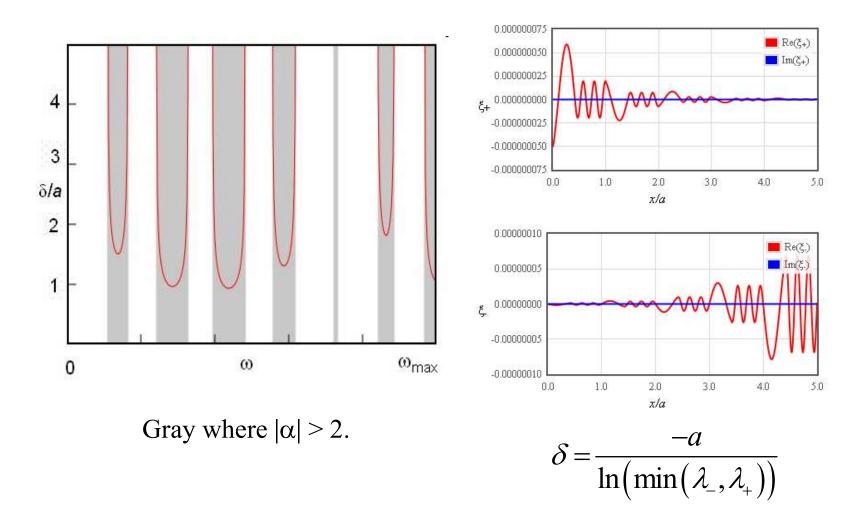
The elements of the translation matrix can be determined by evaluating this equation and its derivative at x = 0. Diagonalize the translation operator and find its eigenvalues to determine the character of the solutions.

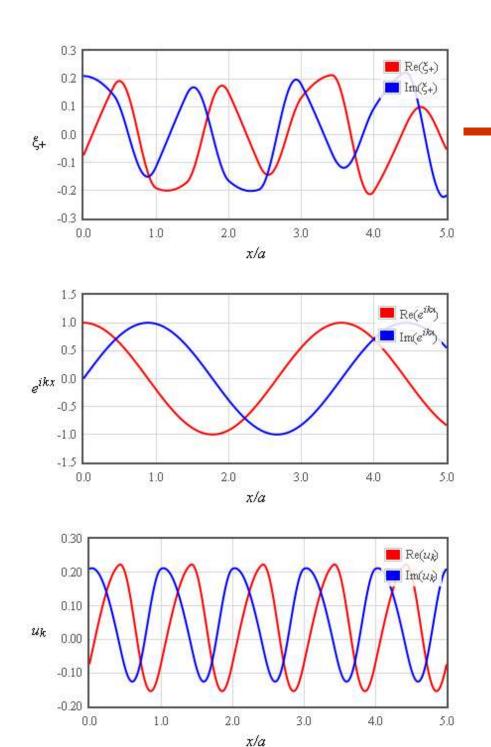
Wave vector



Band gap: exponentially decaying solutions

The one solution grows exponentially and the other decays like $exp(-x/\delta)$.





Bloch waves

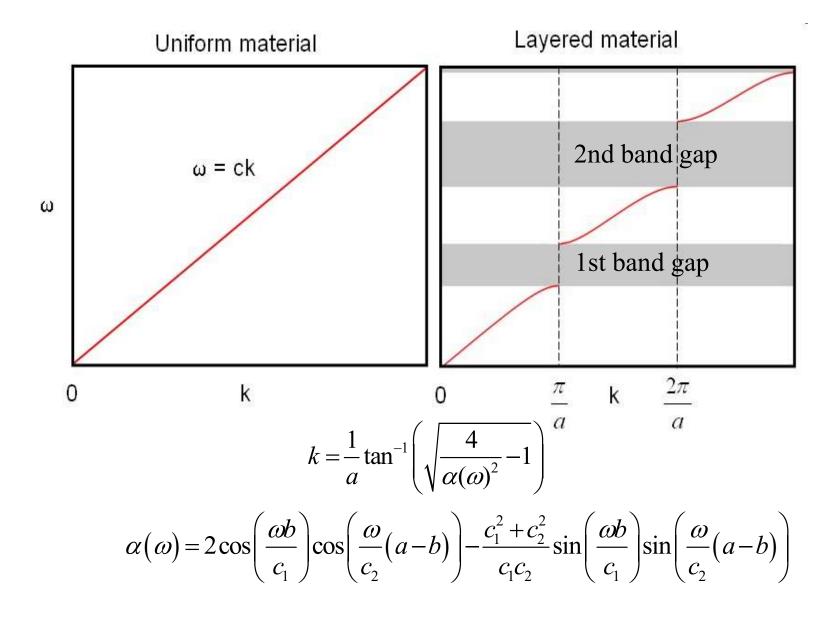
$$\xi = e^{ikx} u_k(x)$$

For periodic boundary conditions L = Na, the allowed values of k are exactly those allowed for waves in vacuum.

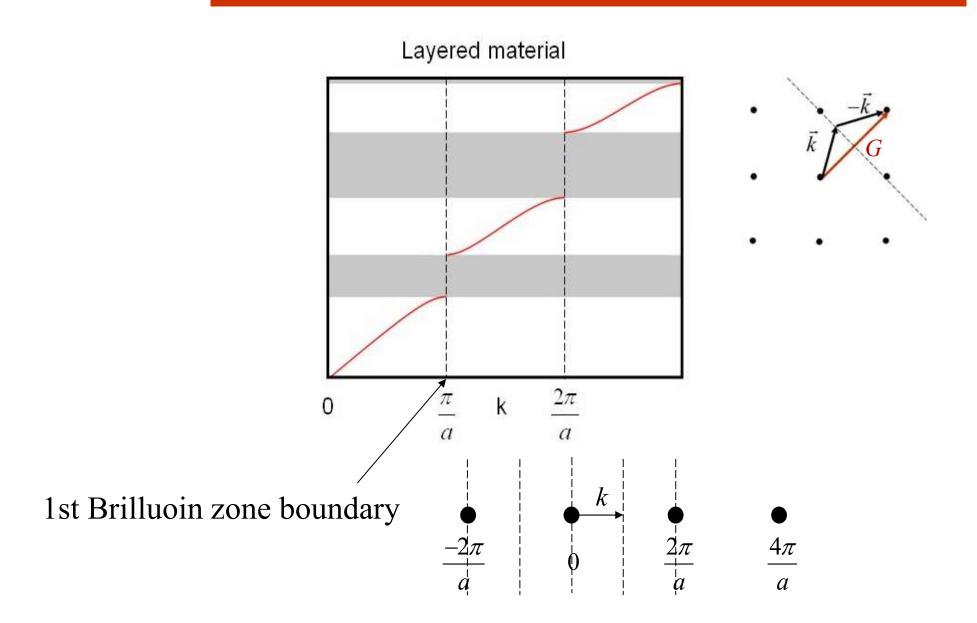
k labels the eigenfunctions of the translation operator.

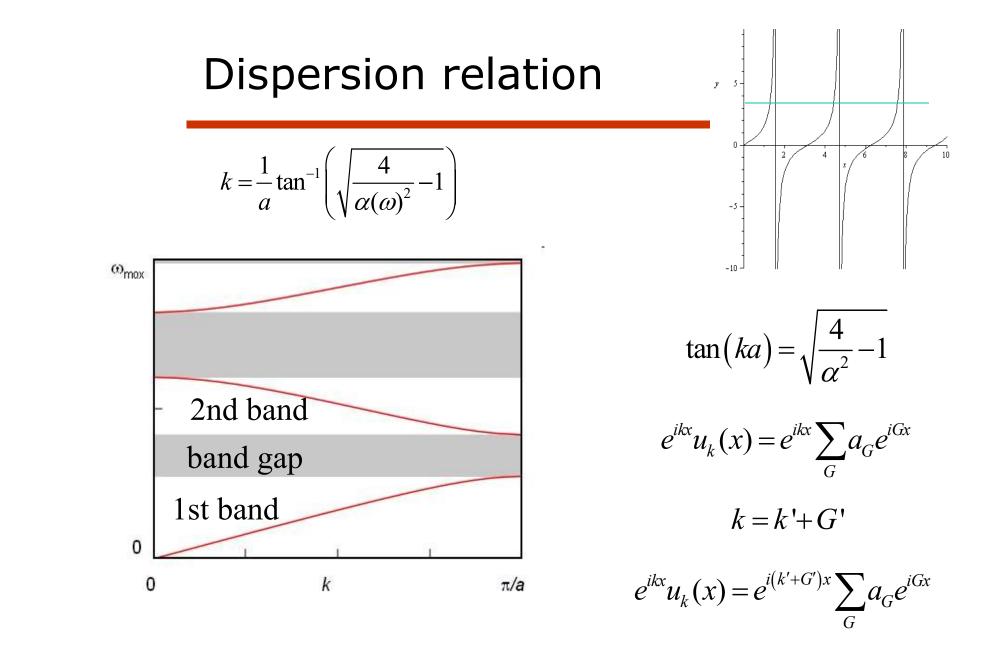
$$Te^{ikx}u_k(x) = e^{ik(x+a)}u_k(x+a) = e^{ika}e^{ikx}u_k(x)$$

Dispersion relation



Diffraction condition

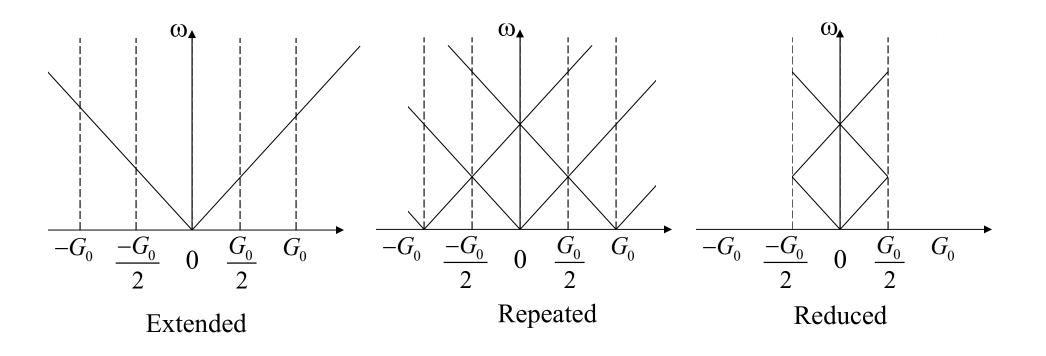




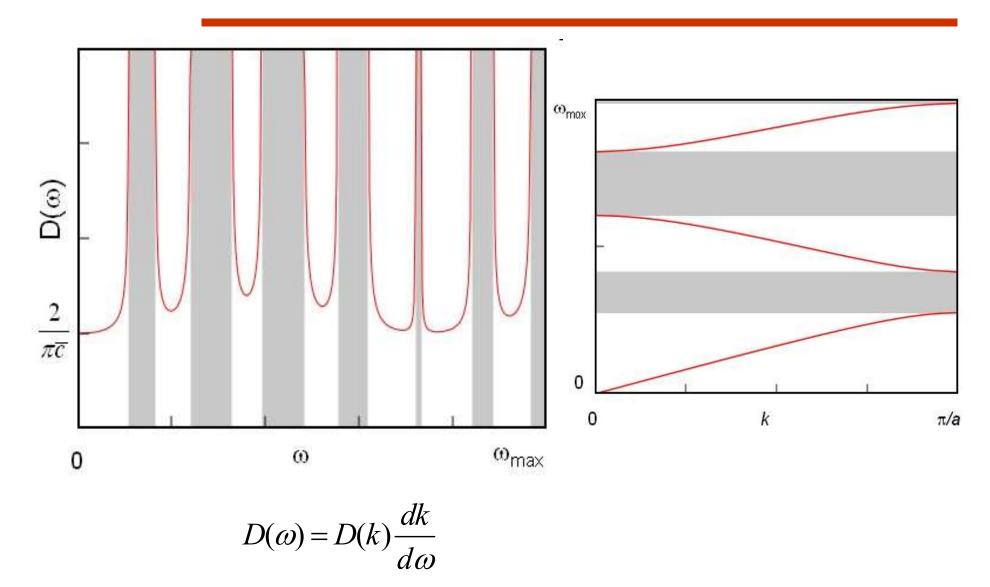
There is only one *k*' in the first Brillouin zone and the convention is to use that one.

 $e^{ikx}u_k(x) = e^{ik'x}\sum_G a_G e^{i(G+G')x}$

Zone schemes

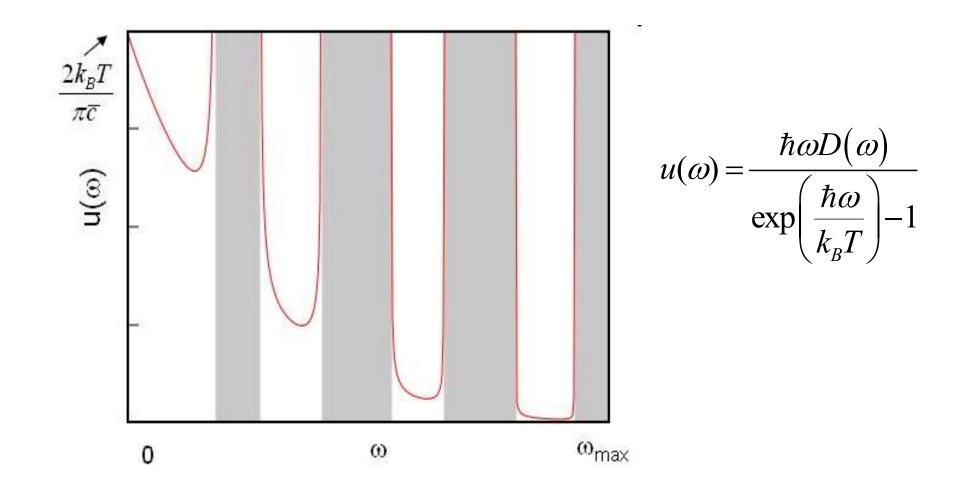


Density of states



The density of states can be determined from the dispersion relation.

Energy spectral density



Analog to the Planck radiation curve.

Thermodynamic quantities

 $u(\omega) = \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1}$

 $DoS \rightarrow u(\omega)$

$$u(T) = \int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_{B}T}\right) - 1} d\omega$$
 DoS \rightarrow u(T)

Internal energy density:

Energy spectral density:

Helmholz free energy density:

$$f(T) = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega.$$
 Dos \rightarrow f(T)

Entropy density:
$$s = -\frac{\partial f}{\partial T} = -k_B \int_0^\infty D(\omega) \left(\ln \left(1 - e^{-\hbar\omega/k_B T}\right) + \frac{\hbar\omega}{k_B T \left(1 - e^{-\hbar\omega/k_B T}\right)} \right) d\omega$$

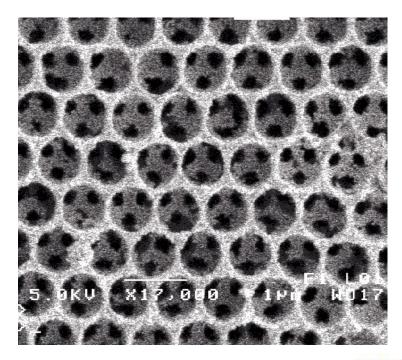
 $DoS \rightarrow s(T)$

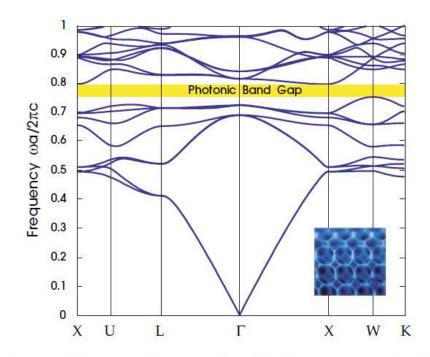
$$c_{\nu} = \int \left(\frac{\hbar\omega}{T}\right)^2 \frac{D(\omega) \exp\left(\frac{\hbar\omega}{k_B T}\right)}{k_B \left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)^2} d\omega$$

Specific heat:

 $DoS \rightarrow cv(T)$

Inverse opal photonic crystal





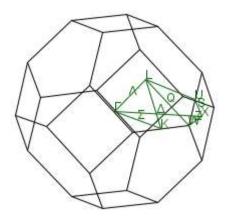


Figure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon = 13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.

http://ab-initio.mit.edu/book

Home

Outline Introduction Molecules

Crystal Diffraction

Photons

Phonons

Electrons

Crystal Structure

Crystal Binding

Energy bands

Magnetism

Appendices

Lectures TUG students

Skriptum

Books

Making

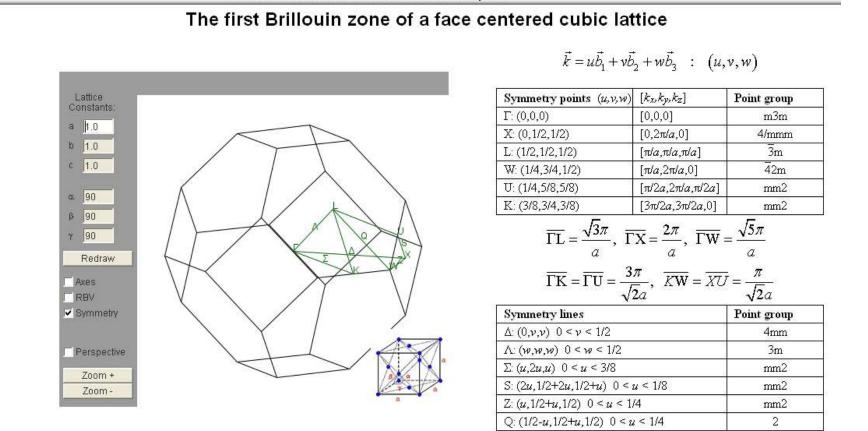
< hide <

Crystal Physics Semiconductors

Exam guestions

Student projects

presentations



The real space and reciprocal space primitive translation vectors are:

$$\begin{split} \vec{a}_1 &= \frac{a}{2} (\hat{x} + \hat{z}), & \vec{a}_2 &= \frac{a}{2} (\hat{x} + \hat{y}), & \vec{a}_3 &= \frac{a}{2} (\hat{y} + \hat{z}), \\ \vec{b}_1 &= \frac{2\pi}{a} (\hat{k}_x - \hat{k}_y + \hat{k}_z), & \vec{b}_2 &= \frac{2\pi}{a} (\hat{k}_x + \hat{k}_y - \hat{k}_z), & \vec{b}_3 &= \frac{2\pi}{a} (-\hat{k}_x + \hat{k}_y + \hat{k}_z) \end{split}$$

Cut-out patterns for Brillouin zones

Cut-out patterns to make your own models of the Brillouin zones. The symmetry points are red and the symmetry lines are blue.

- simple cubic
- face centered cubic
- body centered cubic
- hexagonal
- tetragonal
- body centered tetragonal
- orthorhombic
- face centered orthorhombic
- body centered orthorhombic
- base centered orthorhombic

