TU

Grazm Institute of Solid State Physics

Technische Universitat Graz

Diffraction




TU

Grazs Institute of Solid State Physics

Technische Universitat Graz

Fourier series in 1-D, 2-D, or 3-D
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Reciprocal lattice (Reziprokes Gitter)

Any periodic function can be written as a Fourier series
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Bravais lattice and reciprocal lattice in 1-D
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Reciprocal lattice of an orthorhombic lattice is
an orthorhombic lattice
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The reciprocal lattice of an fcc lattice is a
bcc lattice
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Cubes on a bcc lattice

fF)=) [
G
Multiply by e“and integrate over a primitive unit cell.

| r@erar=ry

unit cell

http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/fourier.php



Cubes on a bcc lattice

J—j _[ [ dr = f.V
A unit cell I
a | ' V 1s the volume of the primitive unit cell.
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J¢ 1s the Fourier transform of /. ; evaluated at G.
1..;; 18 zero outside the primitive unit cell.
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Cubes on a bcc lattice
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The Fourier series for any rectangular cuboid with dimensions
L. <L <L, repeated on any three-dimensional Bravais lattice is:
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Spheres on an fcc lattice
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Multiply by e~ " "and 1ntegrate over a primitive unit cell.
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sphere

The Fourier series for non-overlapping spheres on any three-
dimensional Bravais lattice is:

sin(‘G‘R) —‘G‘LR cos(‘G‘R) exp(ié | ]7).

47C
f(r)= ZG‘, G




Molecular orbital potential
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position of atom j

The Fourier series for any molecular orbital potential is:
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Muffin tin potential

D = Ze? 1 : : :
The potential is U(7) = — Z — around the Bravais lattice points
dmeg j Ir — 7,

The potential is constant between the spheres.
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Intensity of the scattered waves
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Using complex numbers to describe oscillations
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Intensity of the scattered waves
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Interference

elastic scattering
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Interference




Diffraction

Scattering is oC N (]7 ) o Ak
proportional to electron
density n(r)

ol

Scaftering vector

Amplitude:  F,, o€ J. n(?)e‘mk'?d? G = Ak

volume

The scattering amplitude 1s proportional to the Fourier transform of the electron density.



Scattering amplitude

F o j n(7)exp(—iAk -7)dV

expand n(r) in a Fourier series n(r)= Z ne exp(iG - r)
G

Foc) j n, exp(i(G — Ak)-7)dV
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if G = Ak, all components add coherently

diffraction condition: 6 = Kk

The intensity of the peak at G is oc |n?



Nobel Prize 1914

first diffraction experiment of Max von Laue 1912

ZnsS single crystal, exposure time 30°
the 5ih diffraction pattern

M. von Laue (1879-1960)

G =N




Diffraction condition (Laue condition)

—

k| = |K'| for elastic scattering



Single crystal diffraction

—

— k’
k
Scattering wave vector
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G=Ak=¢q

Every time a diffraction peak is observed, record G. When
many G vectors are known, determine the reciprocal lattice.

The sample and the detector must be turned to find all of the
diffraction peaks.
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2.4E10 2.4E10 0 10341

n(F) =Y n; exp(iG-F)

2.4E10 0 2.4E10 9989




¢ rotation

beam trap

)

| counter

20 rotation

@ sets the length of the scattering vector

http://serc.carleton.edu/research education/geochemsheets/techniques/SXD.html



Determining real space primitive lattice vectors

X 2 B
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- b, xb, b.b,,b, determined
a, = . . .
2 h _(” <h ) from diffraction experiment
1 2 3
_ b, xb
a, =2mr——=
b1 ( h X 3)
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G vectors specify the Bravais lattice.



X-ray Fluorescence spectrometer

Tells you the atomic composition of a sample to a fraction of a %



Ewald sphere Ai=¢G
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Draw a vector representing the incoming radiation so that it ends at the

origin. As the crystal is rotated around the origin, the condition for diffraction
will be satisfied every time a reciprocal lattice point is on the sphere.



The number of diffraction peaks that will be observed in a diffraction experiment

- - - . .- . _., = = . - = - - - _” -
Diffraction can occur whenever the diffraction condition, k — k = G, is satisfied. Here k is the wave vector of the incoming waves, k is the wave vector of the
— — —! — —
scattered wave, and G is a reciprocal lattice vector. For elastic scattering, |k| = |k | and diffraction can only occur for 2|k| > |G|. Thus, there are only a finite number

of diffraction peaks observable. The number of diffraction peaks can be estimated by dividing the volume of a sphere of radius 2|k| by the volume of a primitive unit
cell in reciprocal space. A more exact number can be obtained by testing if reciprocal lattice points lie inside the sphere. The form below calculates the primitive

lattice vectors in reciprocal space from the primitive lattice vectors in real space and then determines the number of reciprocal lattice points that satisfy the diffraction
condition.

Primitive lattice vectors:

41 = 4.12 | 2+(0 |y+0 'z [A]
ds =0 &4 4.12 §+0 2[A]
d3 =0 40 g+ 4.12 |2 [A]

X-ray wavelength A = 1.540598 [A]
|CuKa|=1.540598 A
Crka |=228975 A
Mo Ka | =0.7093165 A

| submit |

Al (fcc) | NaCl (fec) || CsCl (sc) | | SrTiO3 (perovskite, sc)
| GaAs (Zincblend, fcc) || GaN (Wurtzite, hex) |

Primitive reciprocal lattice vectors
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Diffraction condition

o
k'-k=G

o For every G there is a -G so the
diffraction condition can also
be written as
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a wave will be diffracted if the wave vector ends on one of the planes
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Brillouin zones e

.

Leon Brillouin

1st Brillouin zone consists of the k-states around the origin that can be
reached without crossing a plane.



