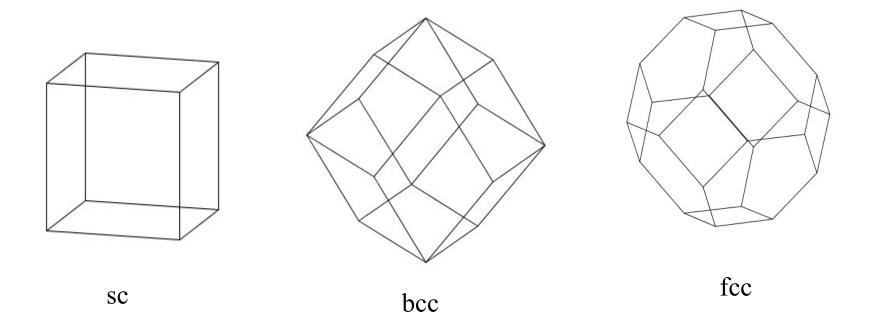



Technische Universität Graz


Institute of Solid State Physics

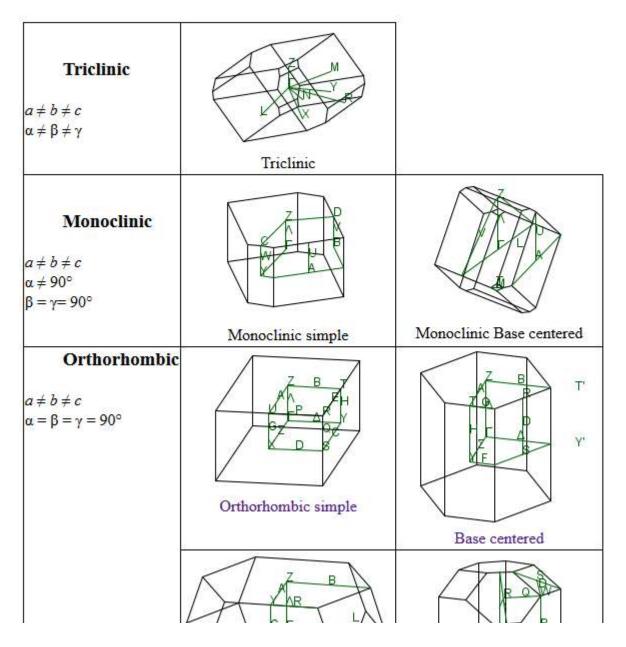
# Diffraction



1st Brillouin zone consists of the *k*-states around the origin that can be reached without crossing a plane.

## 1st Brillouin zones




### 1st Brillouin is the Wigner-Seitz cell in reciprocal space.



¥

~

### **Brillouin zones**



## Electron density of an atom

Most of the electrons are concentrated around the nucleus. The integral over the electron density is proportional to the number of electrons.

$$n_j(\vec{r}) \propto \exp\left(-\frac{\left(\vec{r}-\vec{r}_j\right)^2}{r_0^2}\right)$$

Approximately a Gaussian centered at  $r_i$ 

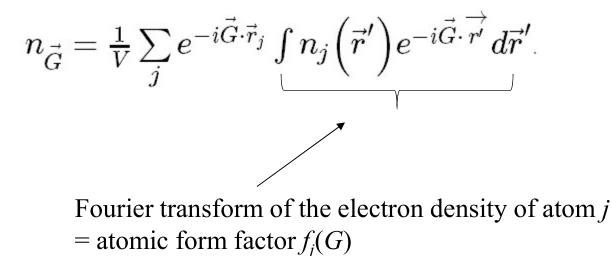
### Electron density

Write the electron density as a Fourier series

$$n(\vec{r}) = \sum_{\vec{G}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} = \sum_{\vec{T}} \sum_{j} n_{j} \left(\vec{r} - \vec{r}_{j} + \vec{T}\right),$$
  
Translation of atom *i* of the basis

position of atom j of the basis

on vector

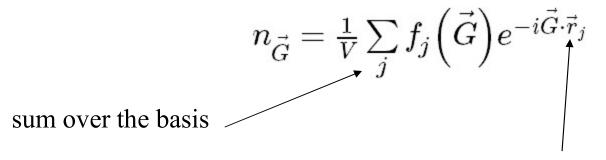

Multiply by  $e^{-i\vec{G}'\cdot\vec{r}}$  and integrate over a unit cell.

$$\sum_{\vec{G}} \int_{\mathbf{u.c.}} n_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} e^{-i\vec{G}'\cdot\vec{r}} d\vec{r} = \sum_{j} \int_{\mathbf{u.c.}} n_j (\vec{r}-\vec{r}_j) e^{-i\vec{G}'\cdot\vec{r}} d\vec{r}.$$

### **Electron density**

$$n_{\vec{G}}V = \sum_{j} \int n_{j} \left(\vec{r} - \vec{r}_{j}\right) e^{-i\vec{G}\cdot\vec{r}} d\vec{r}$$

Make a substitution  $\vec{r}' = \vec{r} - \vec{r}_j$ .




### Atomic form factor

$$f_j\left(\vec{G}\right) = \int n_j\left(\vec{r}\right) e^{-i\vec{G}\cdot\vec{r}} d\vec{r},$$

The atomic form factors can be looked up in a table.

The structure factors are given in terms of the atomic form factors.

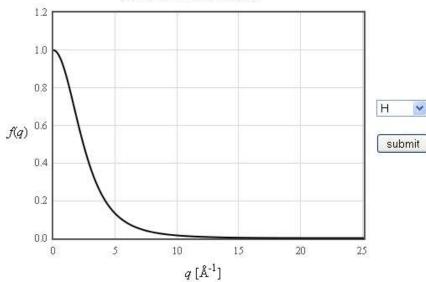


position of atom *j* of the basis

| home   resources   purchase   contact us   help   http://it.iucr.org/Cb/ch4o3v0001/sec4o3o2/ RELATED SITES: IUCr   IUCr ] ournals |                                                                                                                                  |                |                   |                          |                                       |                            |                         |                   |                       |                            |           |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------------|---------------------------------------|----------------------------|-------------------------|-------------------|-----------------------|----------------------------|-----------|
| INTERNATIONA                                                                                                                      | L TABLE                                                                                                                          | S Mathem       | natical, physic   | al and chemic            |                                       | Ŭ                          |                         |                   |                       |                            | ☑Springer |
| A   A1   E                                                                                                                        | 3   <u>C</u>   .                                                                                                                 | D E F          | G                 |                          |                                       |                            |                         |                   |                       | -                          | search    |
|                                                                                                                                   | Home > Volume C > Contents > Chapter 4.3 > Section 4.3.2                                                                         |                |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| International                                                                                                                     |                                                                                                                                  |                |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| Crystallography International Tables for Crystallography (2006). Vol. C, ch. 4.3, p. 262                                          |                                                                                                                                  |                |                   |                          |                                       |                            |                         |                   |                       |                            |           |
|                                                                                                                                   | Volume C<br>Mathematical, physical and<br>chemical tables Section 4.3.2. Parameterizations of electron atomic scattering factors |                |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| chemical table<br>Edited by E. P                                                                                                  |                                                                                                                                  |                | Section 4.        | <b>J.</b> 2. Para        | meterizatio                           | ons of elect               | ron atomic              | e scattern        | ig factors            |                            | ~         |
| eISBN 978-1-4                                                                                                                     |                                                                                                                                  | 8-2            | J. M. Cowle       | y, <sup>b‡</sup> L. M. F | <sup>p</sup> eng, <sup>i</sup> G. Rei | n, <sup>j</sup> S. L. Duda | rev <sup>c</sup> and M. | J. Whelan         | ;                     | S                          | =G        |
| © International (                                                                                                                 | Inion of Cr                                                                                                                      | ustallographu  |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| 2006                                                                                                                              |                                                                                                                                  | ,              |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| Table 4.3.2.2                                                                                                                     | ndf                                                                                                                              |                |                   |                          |                                       |                            | f(a)                    | $\mathbf{\nabla}$ |                       | $(L_{2})$                  |           |
|                                                                                                                                   |                                                                                                                                  | actors of elec | trons for neutral | atoms and s up           | to 2.0 Å <sup>-1</sup>                |                            | ] (S) =                 | = / /             | $l_i \exp($           | $\left(-b_{i}s^{2}\right)$ |           |
|                                                                                                                                   |                                                                                                                                  |                |                   |                          |                                       |                            |                         | i                 | ·                     |                            | /         |
|                                                                                                                                   | 1-                                                                                                                               | 1              |                   |                          |                                       |                            |                         | l.                | T                     |                            |           |
| Element                                                                                                                           | Z                                                                                                                                |                | a <sub>2</sub>    | a3                       | a4                                    | a5                         | <i>b</i> 1              | b2                | <i>b</i> <sub>3</sub> | <i>b</i> <sub>4</sub>      | <u>b5</u> |
| H                                                                                                                                 | 1                                                                                                                                | 0.0349         | 0.1201            | 0.1970                   | 0.0573                                | 0.1195                     | 0.5347                  | 3.5867            | 12.3471               | 18.9525                    | 38.6269   |
| He                                                                                                                                | 2                                                                                                                                | 0.0317         | 0.0838            | 0.1526                   | 0.1334                                | 0.0164                     | 0.2507                  | 1.4751            | 4.4938                | 12.6646                    | 31.1653   |
| Li                                                                                                                                | 3                                                                                                                                | 0.0750         | 0.2249            | 0.5548                   | 1.4954                                | 0.9354                     | 0.3864                  | 2.9383            | 15.3829               | 53.5545                    | 138.7337  |
| Be                                                                                                                                | 4                                                                                                                                | 0.0780         | 0.2210            | 0.6740                   | 1.3867                                | 0.6925                     | 0.3131                  | 2.2381            | 10.1517               | 30.9061                    | 78.3273   |
| В                                                                                                                                 | 5                                                                                                                                | 0.0909         | 0.2551            | 0.7738                   | 1.2136                                | 0.4606                     | 0.2995                  | 2.1155            | 8.3816                | 24.1292                    | 63.1314   |
| С                                                                                                                                 | 6                                                                                                                                | 0.0893         | 0.2563            | 0.7570                   | 1.0487                                | 0.3575                     | 0.2465                  | 1.7100            | 6.4094                | 18.6113                    | 50.2523   |
| N                                                                                                                                 | 7                                                                                                                                | 0.1022         | 0.3219            | 0.7982                   | 0.8197                                | 0.1715                     | 0.2451                  | 1.7481            | 6.1925                | 17.3894                    | 48.1431   |
| 0                                                                                                                                 | 8                                                                                                                                | 0.0974         | 0.2921            | 0.6910                   | 0.6990                                | 0.2039                     | 0.2067                  | 1.3815            | 4.6943                | 12.7105                    | 32.4726   |
| F                                                                                                                                 | 9                                                                                                                                | 0.1083         | 0.3175            | 0.6487                   | 0.5846                                | 0.1421                     | 0.2057                  | 1.3439            | 4.2788                | 11.3932                    | 28.7881   |
| Ne                                                                                                                                | 10                                                                                                                               | 0.1269         | 0.3535            | 0.5582                   | 0.4674                                | 0.1460                     | 0.2200                  | 1.3779            | 4.0203                | 9.4934                     | 23.1278   |
|                                                                                                                                   |                                                                                                                                  | 1              |                   |                          |                                       |                            |                         |                   |                       |                            |           |
| Na                                                                                                                                | 11                                                                                                                               | 0.2142         | 0.6853            | 0.7692                   | 1.6589                                | 1.4482                     | 0.3334                  | 2.3446            | 10.0830               | 48.3037                    | 138.2700  |
| Mg                                                                                                                                | 12                                                                                                                               | 0.2314         | 0.6866            | 0.9677                   | 2.1882                                | 1.1339                     | 0.3278                  | 2.2720            | 10.9241               | 39.2898                    | 101.9748  |
| Al                                                                                                                                | 13                                                                                                                               | 0.2390         | 0.6573            | 1.2011                   | 2.5586                                | 1.2312                     | 0.3138                  | 2.1063            | 10.4163               | 34.4552                    | 98.5344   |

#### 河 Most Visited 🥮 Getting Started 🔝 Latest Headlines 🗌 English to German

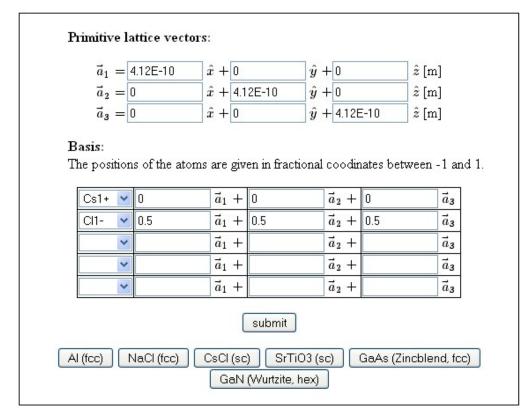



513.001 Molecular and Solid State Physics

#### Atomic form factors

In the range of scattering vectors between  $0 \le q \le 25 \text{ Å}^{-1}$ , the atomic form factor is well approximated by the expression, [1]

$$f(q) = \sum_{i=1}^{4} a_i \exp\left(-b_i \left(\frac{q}{4\pi}\right)^2\right) + c_i$$


where the values of  $a_i$ ,  $b_i$ , and c are tabulated below. The different atomic form factors for the elements can be plotted using the form below.



#### *b*<sub>1</sub> b2 b4 Element b3 a $a_2$ $a_3$ a4 с H 0.489918 20.6593 0.262003 7.74039 0.196767 49.5519 2.20159 0.049879 0.001305 53.1368 15.187 0.415815 186.576 3.56709 H1-0.897661 0.565616 0.116973 0.002389 He 0.8734 9.1037 0.6309 3.3568 22.9276 0.178 0.9821 0.3112 0.0064 ·τ. 1 1000 A 3640 1.0004 A 6196 00.0000 A 4000 120.021 A A000

Home Outline Introduction Molecules Crystal Structure **Crystal Diffraction** Crystal Binding Photons Phonons Electrons Energy bands Crystal Physics Semiconductors Magnetism Exam questions Appendices Lectures **TUG** students Student projects Skriptum Books Making presentations < hide <

Atomic form factor for H

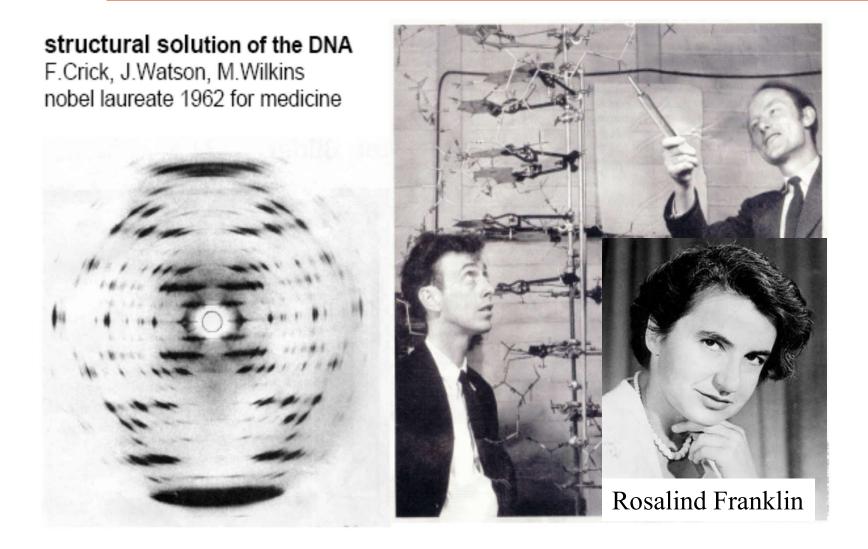


#### Primitive reciprocal lattice vectors

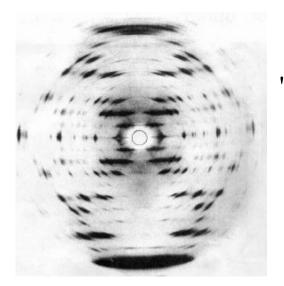
$$\begin{split} \vec{b}_1 &= 2\pi \, \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 1.525 \text{e}{\pm}10 \, \hat{k}_x \pm 0.000 \, \hat{k}_y \pm 0.000 \, \hat{k}_z \, [\text{m}^{-1}] \\ \vec{b}_2 &= 2\pi \, \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \hat{k}_x \pm 1.525 \text{e}{\pm}10 \, \hat{k}_y \pm 0.000 \, \hat{k}_z \, [\text{m}^{-1}] \\ \vec{b}_3 &= 2\pi \, \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} \, = & 0.000 \, \hat{k}_x \pm 0.000 \, \hat{k}_y \pm 1.525 \text{e}{\pm}10 \, \hat{k}_z \, [\text{m}^{-1}] \end{split}$$

#### Structure factors

The value of  $|n_{\vec{G}}|$  for the 000 diffraction peak is the total number of electrons in the primitive unit cell. The intensities of the peaks in an x-ray diffraction experiment


| hkl  | $ ec{G} $ Å <sup>-1</sup> | $n_{\vec{G}}$ | $ n_{\tilde{G}} ^2$ | $\operatorname{Re}\{n_{\tilde{G}}\}$ | $\operatorname{Im}\{n_{\tilde{G}}\}$ |
|------|---------------------------|---------------|---------------------|--------------------------------------|--------------------------------------|
| 000  | 0.000                     | 72.00         | 5184                | 72.00                                | 0.000                                |
| -100 | 1.525                     | 34.43         | 1185                | 34.43                                | 5.333e-8                             |
| 0-10 | 1.525                     | 34.43         | 1185                | 34.43                                | 5.333e-8                             |
| 00-1 | 1.525                     | 34.43         | 1185                | 34.43                                | 5.333e-8                             |
| 001  | 1.525                     | 34.43         | 1185                | 34.43                                | -5.333e-8                            |
|      | 1 000                     |               | 1100                |                                      |                                      |

### Structure factor


$$n_{ec{G}} = rac{1}{V} \sum_j f_j(G) e^{-iec{G}\cdotec{r}_j}$$

An x-ray experiment measures the scattered intensity  $|F_G|^2$ . The phase information is lost. This is proportional to  $|n_G|^2$ .

### crystal structure solution



### crystal structure solution



"Guess" the crystal structure

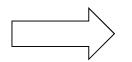



Table 4.3.2.2 |pdf |

Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0  $\mbox{\AA}^{-1}$ 

| Element | Z   | $a_1$  | a2     | a3     | a4     | a5      | $b_1$  | $b_2$  | $b_3$   |
|---------|-----|--------|--------|--------|--------|---------|--------|--------|---------|
| Н       | 1   | 0.0349 | 0.1201 | 0.1970 | 0.0573 | 0.1195  | 0.5347 | 3.5867 | 12.3471 |
| He      | 2   | 0.0317 | 0.0838 | 0.1526 | 0.1334 | 0.0164  | 0.2507 | 1.4751 | 4.4938  |
| Li      | 3   | 0.0750 | 0.2249 | 0.5548 | 1.4954 | 0.9354  | 0.3864 | 2.9383 | 15.3829 |
| Be      | 4   | 0.0780 | 0.2210 | 0.6740 | 1.3867 | 0.6925  | 0.3131 | 2.2381 | 10.1517 |
| В       | 5   | 0.0909 | 0.2551 | 0.7738 | 1.2136 | 0.4606  | 0.2995 | 2.1155 | 8.3816  |
| с       | 6   | 0.0893 | 0.2563 | 0.7570 | 1.0487 | 0.3575  | 0.2465 | 1.7100 | 6.4094  |
| N       | 7   | 0.1022 | 0.3219 | 0.7982 | 0.8197 | 0.1715  | 0.2451 | 1.7481 | 6.1925  |
| 0       | 8   | 0.0974 | 0.2921 | 0.6910 | 0.6990 | 0.2039  | 0.2067 | 1.3815 | 4.6943  |
| F       | 9   | 0.1083 | 0.3175 | 0.6487 | 0.5846 | 0.1421  | 0.2057 | 1.3439 | 4.2788  |
| Ne      | 10  | 0.1269 | 0.3535 | 0.5582 | 0.4674 | 0.1460  | 0.2200 | 1.3779 | 4.0203  |
| Na      | 11  | 0.2142 | 0.6853 | 0.7692 | 1.6589 | 1.4482  | 0.3334 | 2.3446 | 10.0830 |
| Mg      | 12  | 0.2314 | 0.6866 | 0.9677 | 2.1882 | 1.1339  | 0.3278 | 2.2720 | 10.9241 |
| Al      | 13  | 0.2390 | 0.6573 | 1.2011 | 2.5586 | 1.2312  | 0.3138 | 2.1063 | 10.4163 |
| Si      | 14  | 0.2519 | 0.6372 | 1.3795 | 2.5082 | 1.0500  | 0.3075 | 2.0174 | 9.6746  |
| Р       | 15  | 0.2548 | 0.6106 | 1.4541 | 2.3204 | 0.8477  | 0.2908 | 1.8740 | 8.5176  |
| S       | 16  | 0.2497 | 0.5628 | 1.3899 | 2.1865 | 0.7715  | 0.2681 | 1.6711 | 7.0267  |
| Cl      | 17  | 0.2443 | 0.5397 | 1.3919 | 2.0197 | 0.6621  | 0.2468 | 1.5242 | 6.1537  |
| Ar      | 18  | 0.2385 | 0.5017 | 1.3428 | 1.8899 | 0.6079  | 0.2289 | 1.3694 | 5.2561  |
|         | 1.0 | laure  |        | 0.0004 | 0.0240 | 0.01.00 | 0.0700 | 0.0074 | 10.1000 |

Compare  $|n_G|^2$  to the measurements

From the atomic form factors, calculate the structure factors  $n_G$ .

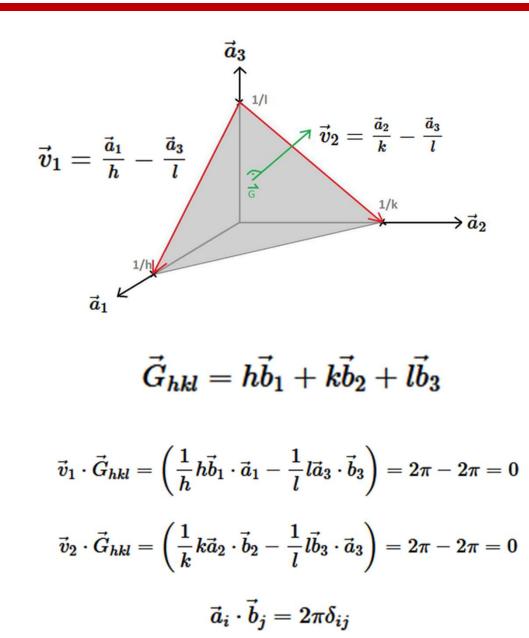
$$n_{ec{G}} = \sum\limits_{j} f_j(G) e^{-iec{G}\cdotec{r}_j}$$

Sum over basis

position of atom *j* of the basis

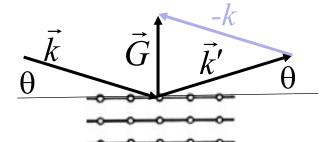
## x-ray diffraction

The shape and the dimensions of the unit cell can be deduced from the positions of the Bragg reflections; the content of the unit cell, on the other hand, must be determined from the intensities of the reflections.

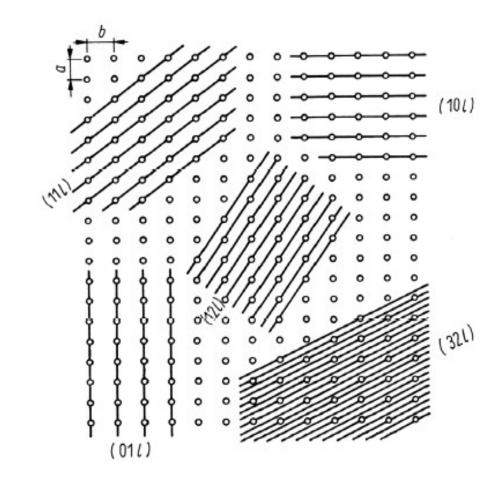

Solid State Physics, Ibach and Lüth

Diffraction condition: 
$$\Delta \vec{k} = \vec{G}$$

The intensity of the peaks is proportional to the squared Fourier coefficients of the electron density.


$$n_{ec{G}} = \sum_j f_j(G) e^{-iec{G}\cdotec{r}_j}$$

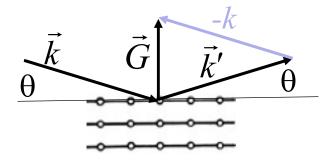
The reciprocal lattice vector  $\vec{G}_{hkl}$  is orthogonal to the (hkl) plane




x-ray diffraction

 $\vec{G}_{hkl} \perp (hkl)$ 




 $\left|\vec{G}_{hkl}\right| = \frac{2\pi}{d_{hkl}}$ 



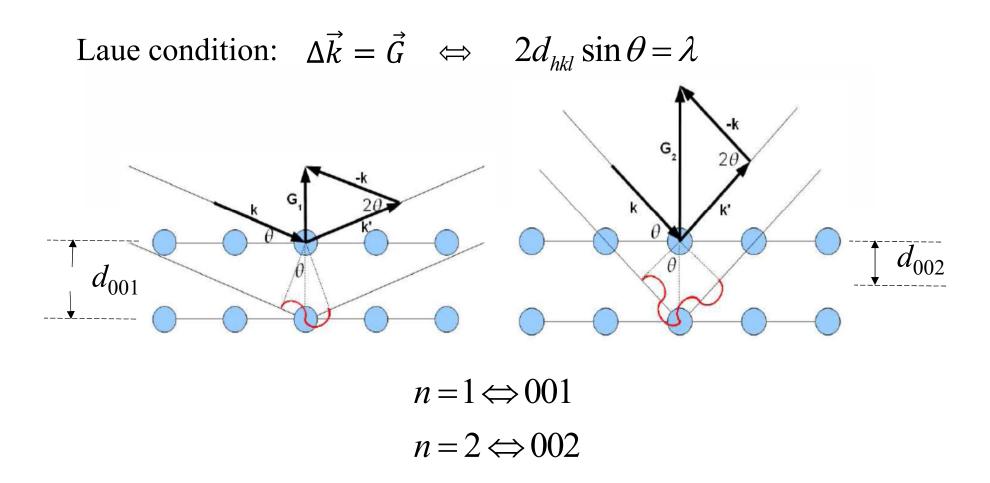
distance between the net planes

## x-ray diffraction

$$\vec{G}_{hkl} \perp (hkl)$$

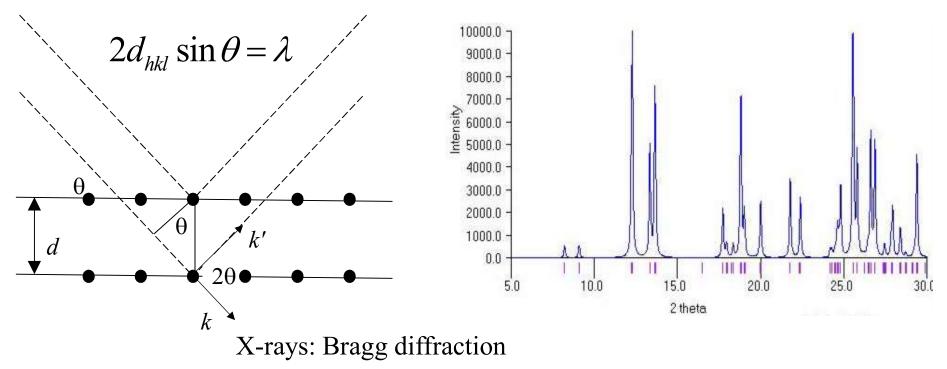


$$\left|\vec{G}_{hkl}\right| = \frac{2\pi}{d_{hkl}}$$
$$\left|\vec{k}\right| = \frac{2\pi}{\lambda}$$


$$\frac{2\pi}{d_{hkl}} = 2\frac{2\pi}{\lambda}\sin\theta$$

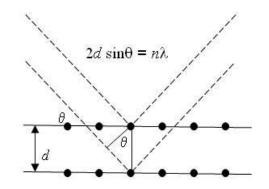
 $\left|\vec{G}_{hkl}\right| = \left|\Delta \vec{k}\right| = 2\left|\vec{k}\right| \sin \theta$ 

 $2d_{hkl}\sin\theta = \lambda$  another formulation of the diffraction condition

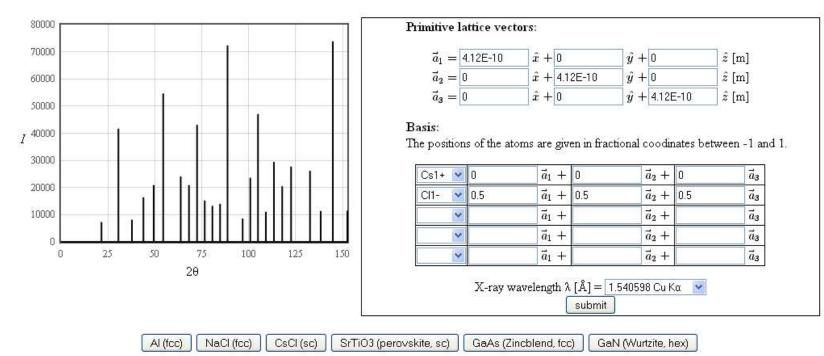

### Bragg and Laue conditions

Bragg condition:  $2d\sin\theta = n\lambda$ 

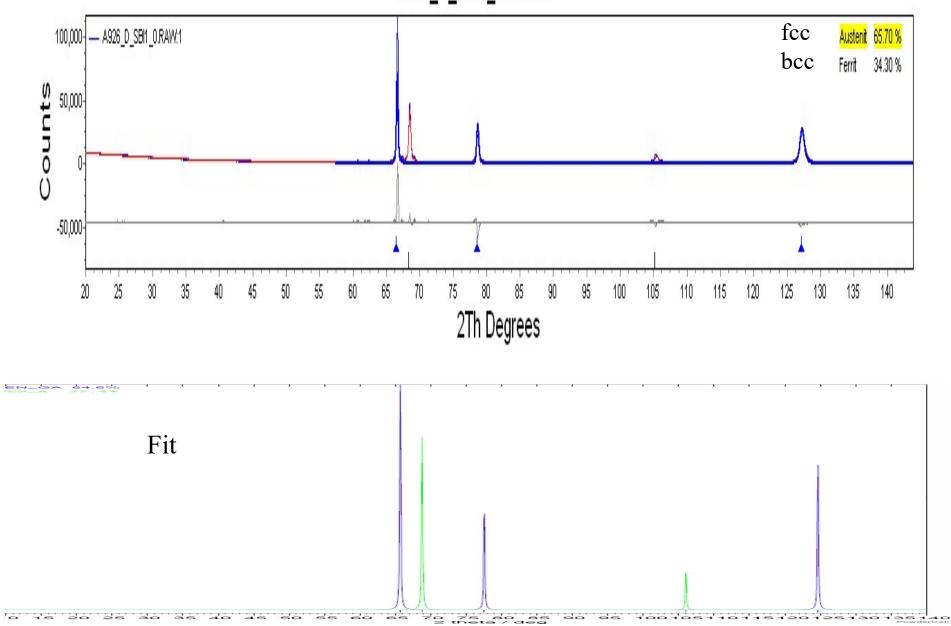



## **Powder diffraction**

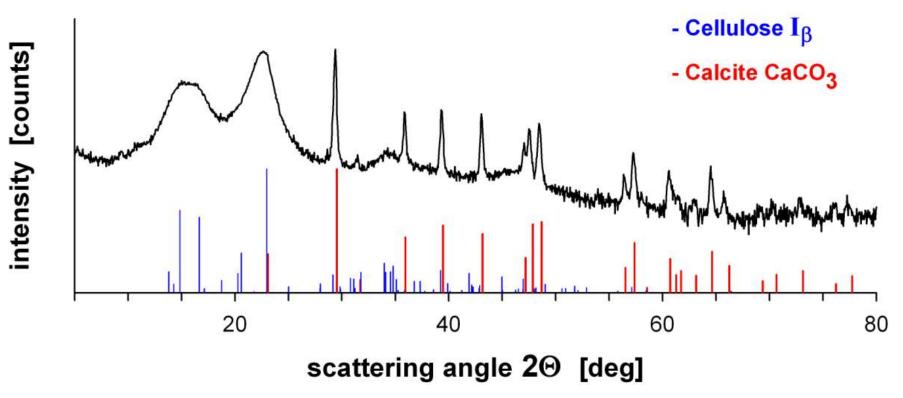
Powder diffraction is performed on a powder of many small crystals. Ideally, every possible crystalline orientation is represented equally in a powdered sample. The relative intensities of the diffraction peaks indicate which crystal structures are present.




#### **Powder diffraction**


For powder diffraction, a crystal is ground into a fine powder so that there are many small crystals with random orientations. X-rays strike the surface of the sample at an angle  $\theta$  and an x-ray detector is placed at an angle  $\theta$  to the surface. Only planes parallel to the surface will diffract x-rays to the detector.




Since there are many small crystals with random orientations in the sample, all possible crystal planes that can diffract the x-rays will contribute to the measured signal when  $\theta$  satisifies the Bragg condition. The form below can calculate the powder diffraction pattern for any crystal with up to five atoms per primitive unit cell. Some buttons are provided that load the form with the data for certain crystals.



A926\_D\_SBI1\_0.RAW:1



### copy paper



### http://rruff.geo.arizona.edu/AMS/all\_minerals.php

### American Mineralogist Crystal Structure Database

| Abellaite                      | Abelsonite            | Abenakiite-(Ce)                | Abernathyite                            | Abhurite    |                                 |            |        |       |        |            |
|--------------------------------|-----------------------|--------------------------------|-----------------------------------------|-------------|---------------------------------|------------|--------|-------|--------|------------|
| Abswurmbachite                 | Acanthite             | Acetamide                      | Acetylene-hydrate                       | Achavalite  |                                 |            |        |       |        |            |
| Actinium                       | Actinolite            | Acuminite                      | Adachiite                               | Adamantane  |                                 |            |        |       |        |            |
| Adamantane-methane-<br>hydrate | <u>Adamite</u>        | Adamsite-(Y)                   | Adelite                                 | Admontite   |                                 |            |        |       |        |            |
| Adolfpateraite                 | Adranosite            | Adranosite-(Fe)                | Aegirine                                | Aenigmatite |                                 |            |        |       |        |            |
| Aerinite                       | Aerugite              | Aechunite (12)                 | Aacchunita_(V)                          | Afghanite   |                                 |            |        |       |        | í          |
| Afmite                         | Afwillite             | A                              | merican Mine                            | ralogist    | Crystal St                      | ructure [  | )ato   | ıha   | Se     |            |
| Agardite-(Y)                   | Agrellite             | / \\                           |                                         | laiogisi    | crystar on                      |            |        | i b u | 50     | ł          |
| Ahlfeldite                     | Ahrensite             |                                |                                         |             |                                 |            |        |       |        |            |
| <u>Ajoite</u>                  | Akaganeite 4 matching | records for this search.       |                                         |             |                                 |            |        |       |        |            |
| Akhtenskite                    | Akimotoite            |                                |                                         |             |                                 |            |        |       |        |            |
| Aktashite                      | Alabandite 🗌 Aluminiu | <u>m</u>                       |                                         |             |                                 |            |        |       |        |            |
| Albertiniite                   | Albite 🛞 Wyckof       | FRWG                           |                                         |             |                                 |            |        |       |        |            |
| Alcaparrosaite                 | Alflarsenite          |                                |                                         |             |                                 |            |        |       |        |            |
| Algodonite                     | Alinite Crysta.       | l Structures 1 (196            | 53) 7-83                                |             |                                 |            |        |       |        |            |
| Allanite-(Ce)                  | Allanite-(La) Second  | edition. Interscie             |                                         |             |                                 |            |        |       |        |            |
| Allantoin                      | Allargentum Cubic     | closest packed, ccp            | , str Wyckoff R W                       |             |                                 |            |        |       |        |            |
| Alloriite                      | Allugivito            | ase_code_amcsd 0011            | Crystal Str                             |             |                                 |            |        |       |        |            |
| Almeidaite                     | Alnaperboe            |                                | Second eurc                             |             | cience Publis                   |            | lork,  | New   | York   |            |
| Altaite                        | Althausite 4.04958    | 8 4.04958 4.04958 9            |                                         |             | ccp, structur                   | e          |        |       |        |            |
| <u>Alum-(Na)</u>               | Aluminite atom        | x y z                          | _database_c                             | ode_amcsd 0 | 0011137                         |            |        |       |        |            |
| Aluminoceladonite              | Aluminoceri Al (      | 0 0 0                          | CELL PARAME                             |             | 0496 4.0496                     | 4,0496     | 90.0   | 200   | 90.00  | 00 000     |
| Aluminotaramite                | Aluminum              | d and data (ifour Test f       |                                         |             | 4.0496                          | 4.0496     | 90.0   | 000   | 90.00  | 90.000     |
| Alumotantite                   | Alumice               | d AMC data (View Text Fi       |                                         |             | 1.541838                        |            |        |       |        |            |
| Amarantite                     | And mice              | d CIF data (View Text File     |                                         |             |                                 |            |        |       |        |            |
| Americium                      | LIII COTTO            | d diffraction data (View T     | ext File Doncity (g/                    |             | 2.698                           |            |        |       |        |            |
|                                | View JMC              | <u>DL 3-D Structure</u> (pamal | ink) MAX. ABS. I                        |             |                                 | 34.6143    | 9413   |       |        |            |
|                                |                       |                                |                                         | .177        |                                 |            |        |       |        |            |
|                                |                       |                                | RIR based o                             | n corundum  | from Acta Cry                   | stallograp | nica / | 438   | (1982) | 733-739    |
|                                |                       |                                |                                         |             |                                 | D-SPACING  | Н      | К     |        | ltiplicity |
|                                |                       |                                | 3                                       | 8.50        | 100.00                          | 2.3380     | 1      | 1     | 1      | 8          |
|                                |                       | •                              | 4                                       | 4.76        | 47.49                           | 2.0248     | 2      | 0     | 0      | 6          |
|                                |                       |                                | 6                                       | 5.16        | 28.01                           | 1.4317     | 2      | 2     | 0      | 12         |
|                                |                       |                                | (i) | 8.30        | 30.71                           | 1.2210     | 3      | 1     | 1      | 24         |
|                                |                       |                                | 8                                       | 2.52        | 8.74                            | 1.1690     | 2      | 2     | 2      | 8          |
|                                |                       |                                |                                         | -           | Bob Downs, Ran<br>et al. (1993) | -          |        |       |        |            |

## Powder diffraction

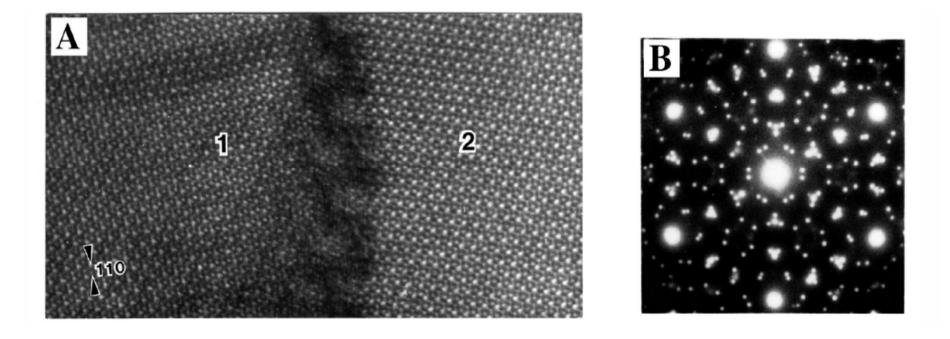
### **Phase identification**

Every crystal has a specific "fingerprint" given by the positions and intensities of the diffraction peaks. The composition of a multi-phase specimen can be determined by fitting its diffraction pattern to the diffraction patterns of pure crystals which can be looked up in a database.

### International Centre for Diffraction Data www.icdd.com

Release 2024: 1186076 material data sets

Phase transitions, thermal expansion, piezoelectricity, piezomagnetism, bulk modulus, compliance tensor can be measured.


### Particle beams

Particles moving in vacuum have the following energymomentum relation.

$$E = \frac{1}{2}mv^{2} = \frac{p^{2}}{2m} = \frac{\hbar^{2}k^{2}}{2m} = \frac{\hbar^{2}}{2m\lambda^{2}}$$

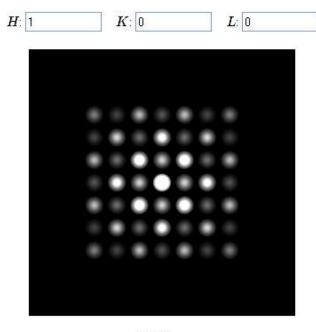
If  $\lambda$  is much smaller than the distance between atoms, you can generate a diffraction pattern.

## Electron diffraction in a TEM



The wavelength of the electrons is typically much smaller than the lattice spacing. The diffraction peaks in the plane perpendicular to k are observed.

#### **Electron diffraction**


In electron diffraction, the intensity of a diffraction peak at reciprocal lattice vector  $\vec{G}$  is the square of the structure factor,  $n_{\vec{\sigma}}$ .

$$n_{\vec{G}} = \frac{1}{V} \sum_{j} f_j \Big(\vec{G}\Big) e^{-i\vec{G}\cdot\vec{r}_j} = \frac{1}{V} \sum_{j} f_j \Big(\vec{G}\Big) \Big( \cos\Bigl(\vec{G}\cdot\vec{r}_j\Bigr) - i \sin\Bigl(\vec{G}\cdot\vec{r}_j\Bigr) \Big)$$

Here V is the volume of the primitive unit cell, j sums over the atoms in the basis,  $\vec{r}_j$  are the positions of the atoms in the basis, and  $f_j(\vec{G})$  are the electron atomic form factors evaluated at  $\vec{G}$ .

The form below calculates the electron structure factors based on this formula. The crystal structure is specified by providing the primitive lattice vectors and the positions of the atoms in the basis. A basis of up to five atoms can be calculated. The script first calculates the primitive reciprocal lattice vectors and from them calculates the reciprocal lattice vectors  $\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$ .

On this page, the direction of the incoming electrons is given in terms of the primitive lattice vectors in reciprocal space,  $H\vec{b}_1 + K\vec{b}_2 + L\vec{b}_3$ . Usually the direction of the incoming electrons are given in terms of the conventional lattice vectors. Be aware that the [100] is a (usually) different direction if primitive lattice vectors are used than if conventional lattice vectors are used.



**Primitive lattice vectors:** 

| $\vec{a}_1 =$ | 4.12E-10 | $\hat{x} +$ | 0        | $\hat{y} +$ | 0        | $\hat{z}$ [m] |
|---------------|----------|-------------|----------|-------------|----------|---------------|
| $\vec{a}_2 =$ | 0        | $\hat{x} +$ | 4.12E-10 | $\hat{y} +$ | 0        | $\hat{z}$ [m] |
| $\vec{a}_3 =$ | 0        | $\hat{x}$ + | Ó        | $\hat{y} +$ | 4.12E-10 | $\hat{z}$ [m] |

#### **Basis**:

The positions of the atoms are given in fractional coodinates between -1 and 1.

| Cs 🔽 | 0   | $\vec{a}_1 + $ | 0   | $\vec{a}_2 + $ | 0   | $\vec{a}_3$ |
|------|-----|----------------|-----|----------------|-----|-------------|
| СІ 🔽 | 0.5 | $\vec{a}_1 + $ | 0.5 | $\vec{a}_2 + $ | 0.5 | $\vec{a}_3$ |
| *    | -   | $\vec{a}_1 + $ |     | $\vec{a}_2 +$  |     | $\vec{a}_3$ |
| *    |     | $\vec{a}_1 + $ |     | $\vec{a}_2 +$  |     | $\vec{a}_3$ |
| ~    |     | $\vec{a}_1 + $ |     | $\vec{a}_2 +$  |     | $\vec{a}_3$ |

submit

## Neutron diffraction

Typically a nuclear reactor is used as the neutron source

There are different atomic form factors for neutrons than for x-rays.

Determine the positions of H in biological samples.

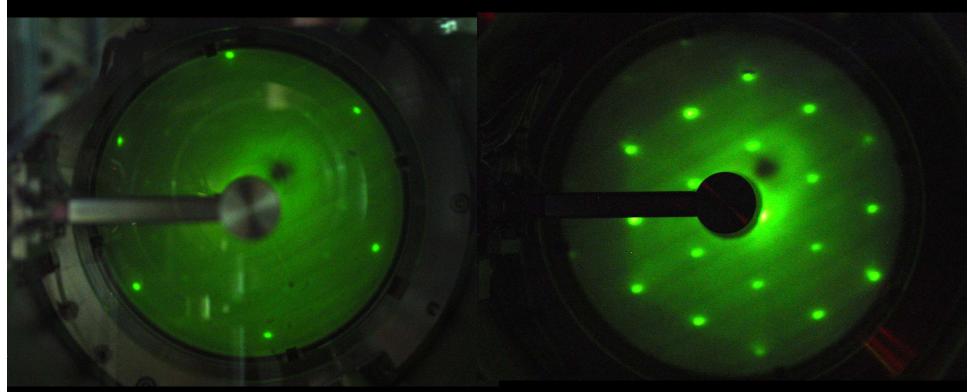
Can for example distinguish between Fe and Co which have similar atomic form factors for x-rays.

#### Structure factor for neutrons

The structure factor for neutrons can be calculated with the following formula,

$$F_{ec{G}} = \sum_{j} b_{j} e^{-iec{G}\cdotec{r}_{j}} = \sum_{j} b_{j} \left( \cos \Bigl(ec{G}\cdotec{r}_{j}\Bigr) - i \sin \Bigl(ec{G}\cdotec{r}_{j}\Bigr) 
ight).$$

where  $\vec{r}_j$  defines the position of the atom j and  $\vec{G}$  is the reciprocal lattice vector.  $\vec{b}_j$  is called the neutron scattering length, it depends on the spin-state of the neutron-nucleus system and the isotope the neutron is scattered from. The scattering lengths can be looked up at the <u>NIST Center for Neutron Research</u>.


The form below calculates the neutron structure factors. The script first calculates the reciprocal lattice vectors and from them calculates the reciprocal lattice vectors  $\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$ . The structure factors are calculated for a few reciprocal lattice vectors and listed in a table.

|             | = 4.1  | 2E-10    | $\hat{x}$ + | 0                         |        | $\hat{y}$ + | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | <i>î</i> [m] |
|-------------|--------|----------|-------------|---------------------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|
| $\vec{a}_2$ | = 0    |          | $\hat{x}$ + | 4.128                     | -10    | $\hat{y}$ + | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | <i>î</i> [m] |
| $\vec{a}_3$ | =0     |          | $\hat{x}$ + | 0                         |        | $\hat{y}$ + | 4.12E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10      | <i>î</i> [m] |
| Pb<br>Ti    |        | 0        |             | $\vec{a}_1 + \vec{a}_1 +$ |        |             | $\vec{a}_2 + \vec{a}_2 + \vec$ | (       |              |
| e positi    | ons of | the ator | ns are      | given                     | in fra | ctional     | coodi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nates l | between      |
|             |        |          |             |                           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (       | ]            |
|             |        |          |             |                           |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |              |
| 0           |        | 0        |             | $\vec{a}_1 +$             | -      |             | $\vec{a}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |              |
| 0           | ~      | 0.5      |             | $\vec{a}_1 +$             | 0      |             | $\vec{a}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5     |              |
| 0           | ~      | 0.5      |             | $\vec{a}_1 +$             | 0.5    |             | $\vec{a}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |              |
|             |        |          |             | $\vec{a}_1 +$             |        |             | $\vec{a}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |              |
|             | ~      |          |             | 7 1                       |        |             | $\vec{a}_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |              |
| 0           |        |          |             | $\vec{a}_1 +$             | L      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |              |

### LEED

### Low Energy Electron Diffraction

 $100 \text{ V} \rightarrow k \sim 5 \times 10^{10} \text{ m}^{-1}$ 

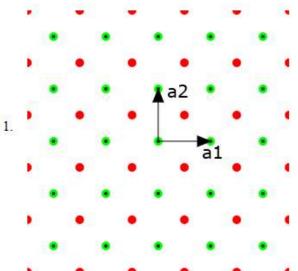


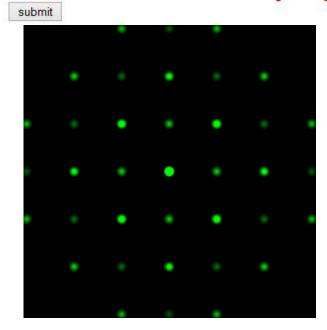
Clean Pd (111)

Pd (111) + 0.3 ML  $VO_x$ 

LEED is surface sensitive

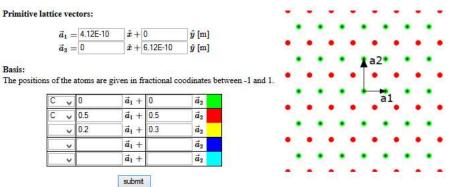
## LEED


Energy of the electron beam: 100 [eV] Primitive lattice vectors:


| $\vec{a}_1 =$ | 4.12E-10 | $\hat{x}$ + | 0        | ŷ [m] |
|---------------|----------|-------------|----------|-------|
| $\vec{a}_2 =$ | 0        | <b>x</b> +  | 4.12E-10 | ŷ [m] |

#### **Basis**:

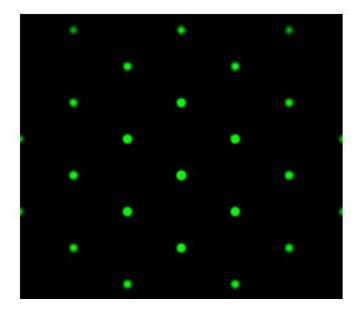
The positions of the atoms are given in fractional coodinates between -1 and 1.


| Cs ∨ | 0   | $\vec{a}_1 + $ | 0   | $\vec{a}_2$ |
|------|-----|----------------|-----|-------------|
| CI 👻 | 0.5 | $\vec{a}_1 +$  | 0.5 | $\vec{a}_2$ |
| ¥    |     | $\vec{a}_1 + $ | 6   | $\vec{a}_2$ |
| ~    |     | $\vec{a}_1 +$  |     | $\vec{a}_2$ |
| ~    | S   | $\vec{a}_1 + $ | 6   | $\vec{a}_2$ |








### Forbidden reflections



Primitive reciprocal lattice vectors

 $\vec{b}_1 = 2\pi \frac{R \vec{a}_2}{\vec{a}_1 \cdot R \vec{a}_2} = 1.525 \text{e}^{+10} \hat{k}_x + 0.000 \hat{k}_y \text{ [m}^{-1]}$   $\vec{b}_2 = 2\pi \frac{R \vec{a}_1}{\vec{a}_1 \cdot R \vec{a}_2} = 0.000 \hat{k}_x + -1.027 \text{e}^{+10} \hat{k}_y \text{ [m}^{-1]}$   $\text{with} \qquad R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 

### Low Energy Electron Diffraction



## Forbidden reflections

 $n_{u.c.}(ec{r}) = \sum_j Z_j \delta(ec{r} - ec{r}_j).$ 

#### **Primitive reciprocal lattice vectors**

$$\begin{split} \vec{b}_1 &= 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 3.939 \ \hat{k}_x + -2.275 \text{e}{+}10 \ \hat{k}_y + 0.000 \ \hat{k}_z \ [\text{m}^{-1}] \\ \vec{b}_2 &= 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 3.939 \ \hat{k}_x + 2.275 \ \hat{k}_y + 0.000 \ \hat{k}_z \ [\text{m}^{-1}] \\ \vec{b}_3 &= 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = 0.000 \ \hat{k}_x + 0.000 \ \hat{k}_y + 1.212 \text{e}{+}10 \ \hat{k}_z \ [\text{m}^{-1}] \end{split}$$

$$n_{ec{G}} = \sum_j Z_j \exp(-iec{G}\cdotec{r}_j).$$

| ma a ol lo a                         |
|--------------------------------------|
| The value of $ n_{\vec{c}} $ for the |
| 000 diffraction peak is              |
| the total number of                  |
| electrons in the primitive           |
| unit cell. The intensities           |
| of the peaks in an x-ray             |
| diffraction experiment               |
| are proportional to                  |
| $ n_{\tilde{G}} ^2$ . Note that      |
| elements with more                   |
| electrons produce                    |
| stronger diffraction                 |
| intensities.                         |

| hkl   | $ ec{G} $ Å <sup>-1</sup> | $ n_{\vec{G}} $ | $ n_{\vec{G}} ^2$ | $\operatorname{Re}\{n_{\vec{G}}\}$ | $\operatorname{Im}\{n_{\vec{G}}\}$ |
|-------|---------------------------|-----------------|-------------------|------------------------------------|------------------------------------|
| 000   | 0.000                     | 75.94           | 5767              | 75.94                              | 0.000                              |
| 0-10  | 4.549e-10                 | 37.87           | 1434              | -37.87                             | 0.02201                            |
| 010   | 4.549e-10                 | 37.87           | 1434              | -37.87                             | -0.02201                           |
| 0-20  | 9.098e-10                 | 38.17           | 1457              | -38.17                             | 0.04379                            |
| 020   | 9.098e-10                 | 38.17           | 1457              | -38.17                             | -0.04379                           |
| 0-30  | 1.365e-9                  | 75.94           | 5767              | 75.94                              | -0.1318                            |
| 030   | 1.365e-9                  | 75.94           | 5767              | 75.94                              | 0.1318                             |
| 0-3-1 | 1.212                     | 0.3909          | 0.1528            | 0.02780                            | 0.3899                             |
| 0-31  | 1.212                     | 0.3914          | 0.1532            | -0.02727                           | 0.3904                             |
| 0-2-1 | 1.212                     | 42.85           | 1836              | -7.648                             | 42.16                              |
| 0-21  | 1.212                     | 42.74           | 1827              | 7.551                              | 42.07                              |
| 0-1-1 | 1.212                     | 43.01           | 1850              | 7.610                              | -42.33                             |
| 0-11  | 1.212                     | 42.96           | 1845              | 7,561                              | -42.29                             |
| 00-1  | 1.212                     | 8.896e-8        | 7.914e-15         | -1.573e-8                          | 8.756e-8                           |
| 001   | 1.212                     | 8.896e-8        | 7.914e-15         | -1.573e-8                          | -8.756e-8                          |
| 01-1  | 1.212                     | 42.96           | 1845              | -7.561                             | 42.29                              |
| 011   | 1.212                     | 43.01           | 1850              | 7.610                              | 42.33                              |
| 02-1  | 1.212                     | 42.74           | 1827              | 7.551                              | -42.07                             |
| 021   | 1.212                     | 42.85           | 1836              | -7.648                             | -42.16                             |
| 03_1  | 1 212                     | ∩ 301⊿          | 0.1532            | _0.02727                           | _0 3004                            |

#### Structure factors

### Atomic beams

Hydrogen and Helium are used for diffraction studies

$$E = \frac{1}{2}mv^{2} = \frac{p^{2}}{2m} = \frac{\hbar^{2}k^{2}}{2m} = \frac{\hbar^{2}}{2m\lambda^{2}}$$

Low energies can be used for delicate samples. Measure the surface like LEED.