Technische Universität Graz

Molecule review

Crystal structure

Review: Molecules I

Every property of a molecule can be calculated using quantum mechanics.

$$
H_{\mathrm{mp}}=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{a} \frac{\hbar^{2}}{2 m_{a}} \nabla_{a}^{2}-\sum_{a, i} \frac{Z_{a} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{i}-\vec{r}_{a}\right|}+\sum_{i<j} \frac{e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{i}-\vec{r}_{j}\right|}+\sum_{a<b} \frac{Z_{a} Z_{b} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{a}-\vec{r}_{b}\right|}
$$

Make some approximations.

$$
\begin{aligned}
& H_{\text {red }}=-\sum_{i} \frac{\hbar^{2}}{2 m_{e}} \nabla_{i}^{2}-\sum_{a} \frac{\hbar^{2}}{\nearrow} \nabla_{a}^{2}-\sum_{a, i} \frac{Z_{a} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{i}-\vec{r}_{a}\right|}+\sum_{i<j} \frac{e^{2}}{4 \pi \epsilon_{0}}<\vec{r}_{j \mid}+\sum_{a<b} \frac{Z_{a} Z_{b} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{a}-\vec{r}_{b}\right|} . \\
& H_{\text {red }}\left(\vec{r}_{1}, \vec{r}_{1}, \cdots, \vec{r}_{N}\right)=H_{\text {mo }}\left(\vec{r}_{1}\right)+H_{\text {mo }}\left(\vec{r}_{2}\right)+\cdots+H_{\text {mo }}\left(\vec{r}_{N}\right) . \\
& \Psi_{\text {red }}\left(\vec{r}_{1}, \vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\left|\psi_{\text {mo }}\left(\vec{r}_{1}\right) \psi_{\text {mo }}\left(\vec{r}_{2}\right) \cdots \psi_{\text {mo }}\left(\vec{r}_{N}\right)\right\rangle .
\end{aligned}
$$

Molecular orbital Hamiltonian: $\quad H_{\mathrm{mo}}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\sum_{a} \frac{Z_{a} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}-\vec{r}_{a}\right|}$.
The exact solution to $H_{\text {red }}$ can be constructed from the solutions to H_{mo}.

Review: Molecules II

$$
H_{\mathrm{mo}}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\sum_{a} \frac{Z_{a} e^{2}}{4 \pi \epsilon_{0}\left|\vec{r}-\vec{r}_{a}\right|} .
$$

The molecular orbitals are constructed using LCAO.

$$
\psi_{\mathrm{mo}}(\vec{r})=\sum_{a} \sum_{a o} c_{a o, a} \phi_{a o}^{Z_{a}}\left(\vec{r}-\vec{r}_{a}\right) .
$$

Substitute into $H_{\mathrm{mo}} \psi_{\mathrm{mo}}=E \psi_{\mathrm{mo}}$, construct the Roothaan equations.
The many electron wavefunction is constructed as a Slater determinant.

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right) \approx\left|\psi_{\mathrm{mo1}} \uparrow\left(\vec{r}_{1}\right), \psi_{\mathrm{mo} 2} \uparrow\left(\vec{r}_{2}\right), \cdots, \psi_{\mathrm{moN}} \uparrow\left(\vec{r}_{N}\right)\right\rangle .
$$

This is an exact solution to H_{red} and an approximate solution to H_{mp}.
The energy is calculated including the electron-electron interactions.

$$
E=\frac{\langle\Psi| H_{m p}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Review: Molecules III

$$
E=\frac{\langle\Psi| H_{m p}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Calculate the bond potential
Bond lengths, bond angles \Rightarrow Shape of the molecule

Rotational energy levels: $\quad E_{J}=\frac{\hbar^{2}}{2 I} J(J+1)=B J(J+1) \quad J=0,1,2, \cdots$

Vibrational energy levels: $\quad E_{\nu}=\hbar \omega(\nu+1 / 2)$

$$
\nu=0,1,2, \cdots
$$

Review: Molecules IV

Calculate the transition rates

$$
\left.\Gamma_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|\langle f| H_{1}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

Complicated emission and adsorption spectra even for simple molecules
Spectra are a 'fingerprint' for a molecule

Dieke, Journal of Molecular Spectroscopy 2, p. 494 (1958)

Crystal structure

A crystal is a three dimensional periodic arrangement of atoms.

Bravais lattice

Sugar (Sucrose)

HM:P 21 \#4
$\mathrm{a}=10.863 \AA$
$\mathrm{b}=8.705 \AA$
$\mathrm{c}=7.759{ }^{\circ}$
$\alpha=90.000^{\circ}$
$\beta=102.945^{\circ}$
$\mathrm{r}=90.000^{\circ}$

7 Crystal Systems

triclinic: $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$
monoclinic: $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha \neq 90^{\circ} \beta=\gamma=90^{\circ}$

orthorhombic: $a \neq b \neq c$ and $\alpha=\beta=\gamma=90^{\circ}$
tetragonal: $a=b \neq c$ and $\alpha=\beta=\gamma=90^{\circ}$
rhombohedral: $\mathrm{a}=\mathrm{b}=\mathrm{c}$ and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

hexagonal: $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$ and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
cubic $\mathrm{a}=\mathrm{b}=\mathrm{c}$ and $\alpha=\beta=\gamma=90^{\circ}$

Primitive lattice vectors

Every point of a Bravais lattice can be reached from another point on the lattice by a translation vector

Translation vector

$$
\vec{T}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3} \quad n_{1}, n_{2}, n_{3}=\cdots-2,-1,0,1,2, \cdots
$$

Primitive lattice vectors

Primitive Unit Cell

There is more than one choice for a primitive unit cell

volume of a unit cell = $\left|\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right|$
$\vec{T}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3} \quad n_{1}, n_{2}, n_{3}=\cdots-2,-1,0,1,2, \cdots$

Unit Cells

There is more than one choice for a primitive unit cell
$\bigcirc 0$

Eugene
Wigner

Frederick Seitz

Wigner-Seitz primitive unit cell

fcc

Wigner-Seitz cells

$$
\vec{a}_{1}=1 \hat{x} \quad \vec{a}_{2}=6.123 \mathrm{e}-17 \hat{x}+(1.000) \hat{y}
$$

https://lampx.tugraz.at/~hadley/ss1/bzones/drawing_WS.php

Drawing Wigner-Seitz Cells

The form below takes the primitive lattice vectors in real space as input and calculates the Bravais lattice vectors $\vec{R}_{h k l}$, the planes ($h k l$) that form the Wigner-Seitz cell boundaries, and the corners of the Wigner-Seitz cell.

Primitive lattice vectors:

A boundary of the Wigner-Seitz cell is a plane normal to $\vec{R}_{h k l}$, that passes through the point $\frac{\vec{R}_{h k l}}{2}$. For the planes that make up the Wigner-Seitz cell boundary, the distance from $\frac{\vec{R}_{h k l}}{2}$ to the origin is smaller than the distance from $\frac{\vec{R}_{h k l}}{2}$ to any of the other Bravais lattice vectors. By computing these distances, the planes that make up the Wigner-Seitz cell can be determined.

The Wigner-Seitz cell consists of 6 planes.
$\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
(00-1)
(010)
(0-10)
$\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$
$\left(\begin{array}{lll}-1 & 0 & 0\end{array}\right)$
The Miller indices are given in terms of the primitive lattice vectors.
Once the planes are known, the points at the corners of the Wigner-Seitz cell can be determined by considering the intersections of the planes. The formula for the ($h k l$) plane is,

$$
R_{h k l, x} k_{x}+R_{h k l, y} k_{y}+R_{h k l, z} k_{z}=\frac{R_{h k l, x}^{2}}{2}+\frac{R_{h k l, y}^{2}}{2}+\frac{R_{h k l, z}^{2}}{2}
$$

By solving the sets of linear equations, the corners can be determined.

Conventional (crystallographic) unit cell

α is the angle between b and c β is the angle between a and c γ is the angle between a and b

6 faces, 8 corners
http://en.wikipedia.org/wiki/Bravais_lattice

Conventional (crystalographic) unit cell

simple cubic

$$
8 \times \frac{1}{8}+6 \times \frac{1}{2}=4
$$

fcc

zincblende

Close packing

$\mathrm{HCP}=$ Hexagonal close pack
Hexagonal Bravais lattice with two atoms in the basis.

Fcc

From: Hall, Solid State Physics

