

Technische Universität Graz

Institute of Solid State Physics

Molecule review

Crystal structure

Every property of a molecule can be calculated using quantum mechanics.

$$\begin{split} H_{\rm mp} &= -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{a} \frac{\hbar^{2}}{2m_{a}} \nabla_{a}^{2} - \sum_{a,i} \frac{Z_{a}e^{2}}{4\pi\epsilon_{0}|\vec{r}_{i} - \vec{r}_{a}|} + \sum_{i < j} \frac{e^{2}}{4\pi\epsilon_{0}|\vec{r}_{i} - \vec{r}_{j}|} + \sum_{a < b} \frac{Z_{a}Z_{b}e^{2}}{4\pi\epsilon_{0}|\vec{r}_{a} - \vec{r}_{b}|} \\ & \text{Make some approximations.} \end{split}$$
$$\begin{aligned} H_{\rm red} &= -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{a} \frac{\hbar^{2}}{2m_{e}} \nabla_{a}^{2} - \sum_{a,i} \frac{Z_{a}e^{2}}{4\pi\epsilon_{0}|\vec{r}_{i} - \vec{r}_{a}|} + \sum_{i < j} \frac{e^{2}}{4\pi\epsilon_{0}|\vec{r}_{i} - \vec{r}_{j}|} + \sum_{a < b} \frac{Z_{a}Z_{b}e^{2}}{4\pi\epsilon_{0}|\vec{r}_{a} - \vec{r}_{b}|}. \\ H_{\rm red}(\vec{r}_{1}, \vec{r}_{1}, \cdots, \vec{r}_{N}) &= H_{\rm mo}(\vec{r}_{1}) + H_{\rm mo}(\vec{r}_{2}) + \cdots + H_{\rm mo}(\vec{r}_{N}). \\ \Psi_{\rm red}(\vec{r}_{1}, \vec{r}_{1}, \cdots, \vec{r}_{N}) &= |\psi_{\rm mo}(\vec{r}_{1})\psi_{\rm mo}(\vec{r}_{2}) \cdots \psi_{\rm mo}(\vec{r}_{N})\rangle. \end{aligned}$$
Molecular orbital Hamiltonian:

Iolecular orbital Hamiltonian: $H_{\rm mo} = -\frac{\pi}{2m_e} \nabla^2 - \sum_a \frac{Z_a c}{4\pi\epsilon_0 |\vec{r} - \vec{r}_a|}.$ The exact solution to $H_{\rm red}$ can be constructed from the solutions to $H_{\rm mo}$.

Review: Molecules II

$$H_{
m mo}=-\,rac{\hbar^2}{2m_e}\,
abla^2-\sum_arac{Z_ae^2}{4\pi\epsilon_0ertec r-ec r_aert}\,.$$

The molecular orbitals are constructed using LCAO.

$$\psi_{
m mo}(ec{r}) = \sum_a \sum_{ao} c_{ao,a} \phi^{Z_a}_{ao} ig(ec{r}-ec{r}_aig).$$

Substitute into $H_{\rm mo}\psi_{\rm mo}=E\psi_{\rm mo}$, construct the Roothaan equations.

The many electron wavefunction is constructed as a Slater determinant.

$$\Psi(ec{r}_1,ec{r}_2,\cdots,ec{r}_N)pprox |\psi_{ ext{mo1}}\uparrow(ec{r}_1),\psi_{ ext{mo2}}\uparrow(ec{r}_2),\cdots,\psi_{ ext{moN}}\uparrow(ec{r}_N)
angle.$$

This is an exact solution to H_{red} and an approximate solution to H_{mp} .

The energy is calculated including the electron-electron interactions.

$$E=rac{\langle \Psi|H_{mp}|\Psi
angle}{\langle \Psi|\Psi
angle}$$

Review: Molecules III

$$E=rac{\langle\Psi|H_{mp}|\Psi
angle}{\langle\Psi|\Psi
angle}$$

Calculate the bond potential

Bond lengths, bond angles \implies Shape of the molecule

Rotational energy levels:
$$E_J = \frac{\hbar^2}{2I}J(J+1) = BJ(J+1)$$
 $J = 0, 1, 2, \cdots$

Vibrational energy levels: $E_{\nu} = \hbar \omega (\nu + 1/2)$ $\nu = 0, 1, 2, \cdots$

Calculate the transition rates

$$\Gamma_{i
ightarrow f} = rac{2\pi}{\hbar} |\langle f \left| H_1
ight| i
angle|^2 \delta(E_f - E_i)$$

Complicated emission and adsorption spectra even for simple molecules

Spectra are a 'fingerprint' for a molecule

Dieke, Journal of Molecular Spectroscopy 2, p. 494 (1958)

Crystal structure

A crystal is a three dimensional periodic arrangement of atoms.

Bravais lattice

Sugar (Sucrose)

7 Crystal Systems $\alpha, \beta, \gamma \neq 90^{\circ}$ **triclinic:** a \neq b \neq c and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ **monoclinic:** $a \neq b \neq c$ and $\alpha \neq 90^{\circ} \beta = \gamma = 90^{\circ}$ **orthorhombic:** $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$ a≠c h **tetragonal:** $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$ $\alpha, \beta, \gamma \neq 90^{\circ}$ С **rhombohedral:** a = b = c and $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ a **hexagonal:** $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$. **cubic** a = b = c and α = β = γ = 90° α is the angle between b and c

Primitive lattice vectors

Every point of a Bravais lattice can be reached from another point on the lattice by a translation vector

Translation vector

$$\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 \qquad n_1, n_2, n_3 = \dots - 2, -1, 0, 1, 2, \dots$$

$$(a_3)$$

$$(a_4)$$

$$(a_5)$$

Primitive Unit Cell

There is more than one choice for a primitive unit cell

volume of a unit cell =

 $|\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)|$

$$\vec{T} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$
 $n_1, n_2, n_3 = \dots - 2, -1, 0, 1, 2, \dots$

Unit Cells

There is more than one choice for a primitive unit cell

Eugene Wigner

Frederick Seitz

Wigner-Seitz primitive unit cell

bcc

Wigner-Seitz cells

https://lampx.tugraz.at/~hadley/ss1/bzones/drawing_WS.php

Drawing Wigner-Seitz Cells

The form below takes the primitive lattice vectors in real space as input and calculates the Bravais lattice vectors \vec{R}_{hkl} , the planes (*hkl*) that form the Wigner-Seitz cell boundaries, and the corners of the Wigner-Seitz cell.

$\vec{a}_1 = 3$	$\hat{x}+0$	$\hat{y}+0$	<i>î</i> [Å]
$\vec{a}_2 = 0$	\hat{x}+3	$\hat{y}+0$	<i>î</i> [Å]
$\vec{a}_3 = 0$	$\hat{x}+0$	$\hat{y}+3$	<i>î</i> [Å]

A boundary of the Wigner-Seitz cell is a plane normal to \vec{R}_{hkl} , that passes through the point $\frac{\vec{R}_{hkl}}{2}$. For the planes that make up the Wigner-Seitz cell boundary, the distance from $\frac{\vec{R}_{hkl}}{2}$ to the origin is smaller than the distance from $\frac{\vec{R}_{hkl}}{2}$ to any of the other Bravais lattice vectors. By computing these distances, the planes that make up the Wigner-Seitz cell can be determined.

The Wigner-Seitz cell consists of 6 planes.

(001)
(0 0 - 1)
$(0\ 1\ 0)$
(0 - 1 0)
(1 0 0)
(-1 0 0)

The Miller indices are given in terms of the primitive lattice vectors.

Once the planes are known, the points at the corners of the Wigner-Seitz cell can be determined by considering the intersections of the planes. The formula for the (hkl) plane is,

$$R_{hkl,x}k_x+R_{hkl,y}k_y+R_{hkl,z}k_z=rac{R_{hkl,x}^2}{2}+rac{R_{hkl,y}^2}{2}+rac{R_{hkl,y}^2}{2}.$$

By solving the sets of linear equations, the corners can be determined.

There are 8 corners:

Conventional (crystallographic) unit cell

 α is the angle between *b* and *c* β is the angle between *a* and *c* γ is the angle between *a* and *b*

6 faces, 8 corners

http://en.wikipedia.org/wiki/Bravais_lattice

Conventional (crystalographic) unit cell

Close packing

HCP = Hexagonal close pack Hexagonal Bravais lattice with two atoms in the basis.

Fcc

Crystalographic unit cell showing close packed plane

Crystalographic lattice vectors Primitive lattice vectors Wigner-Seitz cell

From: Hall, Solid State Physics