

Technische Universität Graz

Institute of Solid State Physics

Electron bandstructures

Fermi surface of a two-dimensional square lattice

http://lampx.tugraz.at/~hadley/ss2/fermisurface/2d_fermisurface/2dsquare.php

http://lamp.tu-graz.ac.at/~hadley/ss1/bands/tbtable/tbtable.html

magnets :

native Structures

2N states per Brillouin zone

A crystal
$$L \times L \times L$$
 has $N = \frac{L^3}{a^3}$ primitive unit cells.

The first Brillouin zone contains

$$N = \frac{\left(\frac{2\pi}{a}\right)^3}{\left(\frac{2\pi}{L}\right)^3} = \frac{L^3}{a^3} \quad k \text{ points.}$$

There are N translational symmetries.

Each *k* state can hold 2 electrons (spin).

There are 2N states per Brillouin zone.

Tight binding

https://next-gen.materialsproject.org/

The Materials Project													Ар	ps	About	t 🗸	Cor	nmun	ity 🗸	ML	. API	e ~	4	
= Q	Home / Apps / Materials Explorer Materials Explorer																		E F	Referen	ces	3 Do	cumenta	ition
ል &	Search for materials information by chemistry, composition, or property.																							
回 公		Materials e.g. Li-Fe or Li,Fe or Li3Fe or mp-19017 Image: Search																						
<u></u>		Н				Only Elements At Least Elements					ments	For	ormula					He						
-					Na Mg			k	materials with only these element					ents	B	C Si	P	S CI		Ne				
			К	Са	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr				
≁ %			Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Xe				
쓰			Cs	Ba	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn				
			Fr		La	Ce	Pr	Sg Nd	Bh Pm	HS Sm	Mt Eu	US Gd	Rg Tb	Dy	Nn Ho	Er	мс Tm	Yb	IS Lu	Og				
≁_					Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr					

Lithium bcc

Sodium

Copper dispersion relation and density of states

Fig. 15. Ag. Density of states calculated from the energy bands in Fig. 10. Ag [75Fon].

Gold

Fig. 9. Au. Density of states calculated from the energy bands in Fig. 4b. Au [71Chr2].

Transition metals

Angle resolved photoemission spectroscopy (ARPES)

Measure the dispersion relation with angle resolved photoemission

Optical absorption

Energy /eV

Thermodynamic properties of metals

From the band structure measurements, we obtain the electron density of states.

Electron density of states for fcc gold

SGTE data for pure elements

SGTE thermodynamic data

The Scientific Group Thermodata Europe SGTE maintains thermodynamic databanks for inorganic and metallurgical systems. Data from their 'pure element database' is plotted below.

Typically, experiments are performed at constant pressure p, temperature T, and number N. Under these conditions, the system will go to the minimum of the Gibbs energy G = U + pV - TS. Here U is the internal energy, V is the volume, and S is the entropy. The top plot is the Gibbs energy per mole g = u + pv - Ts, where u is the internal energy per mole, v is the volume per mole, and s is the entropy per mole.

http://www.sciencedirect.com/science/article/pii/036459169190030N