Technische Universität Graz

Crystal physics

Drift and diffusion

Thermal conductivity

$\vec{j}_{U}=\vec{E} \vec{\mu}$
Average particle energy

internal energy density

$$
\begin{gathered}
\vec{j}_{U}=-\bar{E} D \nabla n=-D \nabla u \\
\vec{j}_{U}=-D \frac{d u}{d T} \nabla T=-D c_{v} \nabla T
\end{gathered}
$$

Thermal conductivity $\xrightarrow{\vec{j}_{U}=-K} \nabla T$

$$
\begin{aligned}
& K=D c_{v} \\
& K \rightarrow 0 \quad \text { as } T \rightarrow 0
\end{aligned}
$$

Wiedemann - Franz law

$$
\frac{K}{\sigma}=\frac{D c_{v}}{n e \mu}
$$

Einstein relation: $\quad D=\frac{\mu k_{B} T}{e}$
Dulong - Petit: $\quad c_{v}=3 n k_{B}$

$$
\frac{K}{\sigma}=\frac{3 k_{B}^{2}}{e^{2}} T
$$

Lorenz number

$$
L=\frac{K_{e l}}{\sigma T}=2.32 \times 10^{-8} \quad \mathrm{~W} \Omega / \mathrm{K}^{2}
$$

Table 5 Experimental Lorenz numbers

$L \times 10^{8}$ watt-ohm/deg ${ }^{2}$			$L \times 10^{8}$ watt-ohm/deg ${ }^{2}$		
Metal	$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	Metal	$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Ag	2.31	2.37	Pb	2.47	2.56
Au	2.35	2.40	Pt	2.51	2.60
Cd	2.42	2.43	Su	2.52	2.49
Cu	2.23	2.33	W	3.04	3.20
Mo	2.61	2.79	Zn	2.31	2.33

At low temperatures the classical predictions for the thermal and electrical conductivities are too high but their ratio is correct. Only the electrons within $k_{B} T$ of the Fermi surface contribute.

Crystal Physics

Crystal physics explains what effects the symmetries of the crystal have on observable quantities.

An Introduction to Crystal Physics Ervin Hartmann http://ww1.iucr.org/comm/cteach/pamphlets/18/index.html

International Tables for Crystallography http://it.iucr.org/

Kittel chapter 3: elastic strain

Strain

A distortion of a material is described by the strain matrix

$$
\begin{aligned}
& x^{\prime}=\left(1+\varepsilon_{x x}\right) \hat{x}+\varepsilon_{x y} \hat{y}+\varepsilon_{x z} \hat{z} \\
& y^{\prime}=\varepsilon_{y x} \hat{x}+\left(1+\varepsilon_{y y}\right) \hat{y}+\varepsilon_{y z} \hat{z} \\
& z^{\prime}=\varepsilon_{z x} \hat{x}+\varepsilon_{z y} \hat{y}+\left(1+\varepsilon_{z z}\right) \hat{z}
\end{aligned}
$$

Stress

9 forces describe the stress
$X x, X y, X z, Y x, Y y, Y z, Z x, Z y, Z z$

$$
\text { stress tensor: } \quad \sigma=\left[\begin{array}{ccc}
\frac{Y_{x}}{A_{x}} & \frac{Y_{y}}{A_{y}} & \frac{Y_{z}}{A_{z}} \\
\frac{Z_{x}}{A_{x}} & \frac{Z_{y}}{A_{y}} & \frac{Z_{z}}{A_{z}}
\end{array}\right]
$$

$X x$ is a force applied in the x-direction to the plane normal to x
$X y$ is a sheer force applied in the x-direction to the plane normal to y

Stress is force $/ \mathrm{m}^{2}$

Stress and Strain

$$
\varepsilon_{i j}=S_{i j k l} \sigma_{k l}
$$

The stress - strain relationship is described by a rank 4 stiffness tensor. The inverse of the stiffness tensor is the compliance tensor.

$$
\sigma_{i j}=c_{i j k l} \varepsilon_{k l}
$$

Einstein convention: sum over repeated indices.

$$
\begin{aligned}
& \varepsilon_{x x}=S_{x x x x} \sigma_{x x}+S_{x x x y} \sigma_{x y}+S_{x x x z} \sigma_{x z}+S_{x x y x} \sigma_{y x}+s_{x x y y} \sigma_{y y} \\
& +S_{x x y z} \sigma_{y z}+S_{x x z x} \sigma_{z x}+S_{x x z y} \sigma_{z y}+S_{x x z z} \sigma_{z z}
\end{aligned}
$$

Statistical Physics

Microcannonical Ensemble: Internal energy is expressed in terms of extrinsic quantities $U(S, M, P, \varepsilon, N, V)$.

$$
d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l}
$$

For instance, in an electric field, if the dipole moment is changed, the change of the energy is,

$$
\begin{gathered}
\Delta U=\vec{E} \cdot \Delta \vec{P} \\
d U=E_{k} d P_{k}
\end{gathered}
$$

The normal modes must be solved for in the presence of electric and magnetic fields (Advanced Solid State Physics course).

Statistical Physics

Microcannonical Ensemble: Internal energy is expressed in terms of extrinsic quantities $U(S, M, P, \varepsilon, N, V) . \quad \varepsilon_{i j} \Rightarrow L \varepsilon_{i j}$

$$
\begin{aligned}
& d U=\frac{\partial U}{\partial S} d S+\frac{\partial U}{\partial \varepsilon_{i j}} d \varepsilon_{i j}+\frac{\partial U}{\partial P_{k}} d P_{K}+\frac{\partial U}{\partial M_{l}} d M_{l} \\
& d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l}
\end{aligned}
$$

Cannonical ensemble: At constant temperature, make a Legendre transformation to the Helmholtz free energy.
$F=U-T S$
$F(V, T, N, M, P, \varepsilon)$
Make a Legendre transformation to the Gibbs potential $G(T, H, E, \sigma)$

$$
G=U-T S-\sigma_{i j} \varepsilon_{i j}-E_{k} P_{K}-H_{l} M_{l}
$$

Gibbs free energy

$$
G=U-T S-\sigma_{i j} \varepsilon_{i j}-E_{k} P_{K}-H_{l} M_{l}
$$

$$
\begin{gathered}
d G=d U-T d S-S d T-\sigma_{i j} d \varepsilon_{i j}-\varepsilon_{i j} d \sigma_{i j}-E_{k} d P_{k}-P_{k} d E_{k}-H_{l} d M_{l}-M_{l} d H_{l} \\
d U=T d S+\sigma_{i j} d \varepsilon_{i j}+E_{k} d P_{K}+H_{l} d M_{l} \\
d G=-S d T-\varepsilon_{i j} d \sigma_{i j}-P_{k} d E_{k}-M_{l} d H_{l}
\end{gathered}
$$

total derivative: $d G=\left(\frac{\partial G}{\partial T}\right) d T+\left(\frac{\partial G}{\partial \sigma_{i j}}\right) d \sigma_{i j}+\left(\frac{\partial G}{\partial E_{k}}\right) d E_{k}+\left(\frac{\partial G}{\partial H_{l}}\right) d H_{l}$

$$
\begin{array}{ll}
\left(\frac{\partial G}{\partial \sigma_{i j}}\right)=-\varepsilon_{i j} & \left(\frac{\partial G}{\partial E_{k}}\right)=-P_{k} \\
\left(\frac{\partial G}{\partial H_{l}}\right)=-M_{l} & \left(\frac{\partial G}{\partial T}\right)=-S
\end{array}
$$

$$
\begin{aligned}
& d \varepsilon_{i j}=\left(\frac{\partial \varepsilon_{i j}}{\partial \sigma_{k l}}\right) d \sigma_{k l}+\left(\frac{\partial \varepsilon_{i j}}{\partial E_{k}}\right) d E_{k}+\left(\frac{\partial \varepsilon_{i j}}{\partial H_{J}}\right) d H_{l}+\left(\frac{\partial \varepsilon_{i j}}{\partial T}\right) d T \\
& d P_{i}=\left(\frac{\partial P_{i}}{\partial \sigma_{k l}}\right)^{1} d \sigma_{k l}+\left(\frac{\partial P_{i}}{\partial E_{k}}\right)^{2} d E_{k}+\left(\frac{\partial P_{i}}{\partial H_{l}}\right)^{3} d H_{l}+\left(\frac{\partial P_{i}}{\partial T}\right) d T \\
& d M_{i}=\left(\frac{\partial M_{i}}{\partial \sigma_{k l}}\right)^{5} d \sigma_{k l}+\left(\frac{\partial M_{i}}{\partial E_{k}}\right)^{6} d E_{k}+\left(\frac{\partial M_{i}}{\partial H_{l}}\right)^{7} d H_{l}+\left(\frac{\partial M_{i}}{\partial T}\right) d T \\
& d S=\left(\frac{\partial S}{\partial \sigma_{k l}}\right)^{9} d \sigma_{k l}+\left(\frac{\partial S}{\partial E_{k}}\right)^{10} d E_{k}+\left(\frac{\partial S}{\partial H_{l}}\right)^{11} d H_{I}+\left(\frac{\partial S}{\partial T}\right)^{12} d T
\end{aligned}
$$

1. Elastic deformation.
2. Reciprocal (or converse) piezo-electric effect.
3. Reciprocal (or converse) piezo-magnetic effect.
4. Thermal dilatation.
5. Piezo-electric effect.
6. Electric polarization.
7. Magneto-electric polarization.
8. Pyroelectricity.
9. Piezo-magnetic effect.
10. Reciprocal (or converse) magneto-electric polarization.
11. Magnetic polarization.
12. Pyromagnetism.
13. Piezo-caloric effect.
14. Electro-caloric effect.
15. Magneto-caloric effect.
16. Heat transmission.

Direct and reciprocal effects (Maxwell relations)

$$
\begin{aligned}
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial E_{k} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial E_{k}}\right)=d_{k i j} \\
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial H_{l}}\right)=\left(\frac{\partial M_{l}}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial H_{l} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial H_{l}}\right)=q_{l i j} \\
& -\left(\frac{\partial^{2} G}{\partial E_{k} \partial H_{l}}\right)=\left(\frac{\partial M_{j}}{\partial E_{k}}\right)=-\left(\frac{\partial^{2} G}{\partial H_{l} \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial H_{l}}\right)=\lambda_{l k} \\
& -\left(\frac{\partial^{2} G}{\partial \sigma_{i j} \partial T}\right)=\left(\frac{\partial S}{\partial \sigma_{i j}}\right)=-\left(\frac{\partial^{2} G}{\partial T^{2} \partial \sigma_{i j}}\right)=\left(\frac{\partial \varepsilon_{i j}}{\partial T}\right)=\alpha_{i j} \\
& -\left(\frac{\partial^{2} G}{\partial T \partial E_{k}}\right)=\left(\frac{\partial P_{k}}{\partial T}\right)=-\left(\frac{\partial^{2} G}{\partial E_{k} \partial T}\right)=\left(\frac{\partial S}{\partial E_{k}}\right)=p_{k} \\
& -\left(\frac{\partial^{2} G}{\partial T \partial H_{l}}\right)=\left(\frac{\partial M_{l}}{\partial T}\right)=-\left(\frac{\partial^{2} G}{\partial H_{j} \partial T}\right)=\left(\frac{\partial S}{\partial H_{l}}\right)=m_{l}
\end{aligned}
$$

Useful to check for errors in experiments or calculations

Point Groups

Crystals can have symmetries: rotation, reflection, inversion,...

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Symmetries can be represented by matrices.
All such matrices that bring the crystal into itself form the group of the crystal.

$$
\mathrm{AB} \in \mathrm{G} \text { for } \mathrm{A}, \mathrm{~B} \in \mathbf{G}
$$

32 point groups (one point remains fixed during transformation) 230 space groups

Cyclic groups

$C_{2} \quad E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$C_{4} \quad E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{4}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{4}^{3}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{6}=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{3}=\left[\begin{array}{ccc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right], C_{3}^{2}=\left[\begin{array}{ccc}-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right], C_{6}^{5}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
http://en.wikipedia.org/wiki/Cyclic_group

Pyroelectricity $\quad \pi_{i}=-\left(\frac{\partial^{2} G}{\partial E_{i} \partial T}\right)$

Pyroelectricity is described by a rank 1 tensor

$$
\begin{gathered}
\pi_{i}=\frac{\partial P_{i}}{\partial T} \\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
\pi_{z}
\end{array}\right]=\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
-\pi_{z}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
\pi_{x} \\
\pi_{y} \\
\pi_{z}
\end{array}\right]=\left[\begin{array}{l}
-\pi_{x} \\
-\pi_{y} \\
-\pi_{z}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Pyroelectricity

Quartz, ZnO , LaTaO_{3}

example

Turmalin: point group 3 m for $\Delta T=1^{\circ} \mathrm{C}$, $\Delta \mathrm{E} \sim 7 \cdot 10^{4} \mathrm{~V} / \mathrm{m}$

Pyroelectrics have a spontaneous polarization. If it can be reversed by an electric field they are called Ferroelectrics $\left(\mathrm{BaTiO}_{3}\right)$

Pyroelectrics are at Joanneum research to make infrared detectors (to detect humans).

10 Pyroelectric crystal classes: $1,2, \mathrm{~m}, \mathrm{~mm} 2,3,3 \mathrm{~m}, 4,4 \mathrm{~mm}, 6,6 \mathrm{~mm}$

Electric susceptibility $\quad \chi_{i j}=-\left(\frac{\partial^{2} G}{\partial E_{i} \partial E_{j}}\right)$

$$
\begin{gathered}
P_{i}=\chi_{i j} E_{j} \\
{\left[\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right]=\left[\begin{array}{lll}
\chi_{x x} & \chi_{x y} & \chi_{x z} \\
\chi_{y x} & \chi_{y y} & \chi_{y z} \\
\chi_{z x} & \chi_{z y} & \chi_{z z}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]}
\end{gathered}
$$

Transforming P and E by a crystal symmetry must leave the susceptibility tensor unchanged

$$
U \vec{P}=\chi U \vec{E} \quad U^{-1} U \vec{P}=U^{-1} \chi U \vec{E} \quad \chi=U^{-1} \chi U
$$

If rotation by 180 about the z axis is a symmetry,

$$
\begin{aligned}
U=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad U^{-1}=U=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad U^{-1} \chi U=\left[\begin{array}{ccc}
\chi_{x x} & \chi_{x y} & -\chi_{x z} \\
\chi_{y x} & \chi_{y y} & -\chi_{y z} \\
-\chi_{\mathrm{zx}} & -\chi_{z y} & \chi_{z z}
\end{array}\right] \\
\chi_{\mathrm{xz}}=\chi_{\mathrm{yz}}=\chi_{\mathrm{zx}}=\chi_{\mathrm{zy}}=0
\end{aligned}
$$

The 32 Crystal Classes

Birefringence

Calcite
name
rhombohedral holohedral $\quad \overline{3} m$
rhombohedral hemimorphic
rhombohedral tetartohedral $\overline{3}$
trapezohedral
rhombohedral tetartohedral
internationa
$3 m$

32

3

Schoenflies examples
$O_{3 j^{\prime}} \quad$ calcite, corundum, hematite
$\mathrm{C}_{3 v} \quad$ tourmaline, alunite
$S_{6} \quad$ dolomite, ilmenite
D_{3}
C_{3}
quartz, cinnabar
none verified

Cubic crystals

All second rank tensors of cubic crystals reduce to constants
Electrical conductivity, thermal conductivity, electric susceptibility, magnetic susceptibility, Peltier effect (heat current due to electrical current), Seebeck effect (Electric field due to thermal gradient)

216: ZnS, GaAs, GaP, InAs, SiC 221: CsCl, cubic perovskite 225: Al, Cu, Ni, Ag, Pt, Au, Pb, NaCl 227: C, Si, Ge, spinel 229: Na, K, Cr, Fe, Nb, Mo, Ta

23	T	195-199		12	
m3	T_{h}	200-206		24	
432	0	207-214		24	[0
$\overline{4} 3 m$	T_{d}	215-220	216: Zincblende, ZnS, GaAs, GaP, InAs, SiC	24	
m3m	On	221-230	221: CsCl , cubic perovskite 225: fcc, Al, Cu, Ni, $\mathrm{Ag}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Pb}, \gamma-\mathrm{Fe}$, NaCl 227. diamond C, Si	48	

Material	$\rho(\Omega \cdot \mathrm{m})$ at $20{ }^{\circ} \mathrm{C}$	$\sigma(\mathrm{S} / \mathrm{m})$ at $20{ }^{\circ} \mathrm{C}$	Temperature coefficient ${ }^{[\text {note 1] }}$ (K^{-1})	Reference
Silver	1.59×10^{-8}	6.30×10^{7}	0.0038	[7][8]
Copper	1.68×10^{-8}	5.96×10^{7}	0.0039	[8]
Annealed copper ${ }^{[\text {[note 2] }}$	1.72×10^{-8}	5.80×10^{7}		[citation needed]
Gold [note 3]	2.44×10^{-8}	4.10×10^{7}	0.0034	[7]
Aluminium ${ }^{\text {[note 4] }}$	2.82×10^{-8}	3.5×10^{7}	0.0039	${ }^{[7]}$
Calcium	3.36×10^{-8}	2.98×10^{7}	0.0041	
Tungsten	5.60×10^{-8}	1.79×10^{7}	0.0045	[7]
Zinc	5.90×10^{-8}	1.69×10^{7}	0.0037	[9]
Nickel	6.99×10^{-8}	1.43×10^{7}	0.006	
Lithium	9.28×10^{-8}	1.08×10^{7}	0.006	
Iron	1.0×10^{-7}	1.00×10^{7}	0.005	[7]
Platinum	1.06×10^{-7}	9.43×10^{6}	0.00392	${ }^{[7]}$
Tin	1.09×10^{-7}	9.17×10^{6}	0.0045	
Carbon steel (1010)	1.43×10^{-7}	6.99×10^{6}		[10]
Lead	2.2×10^{-7}	4.55×10^{6}	0.0039	[7]
Titanium	4.20×10^{-7}	2.38×10^{6}	X	
Grain oriented electrical steel	4.60×10^{-7}	2.17×10^{6}		[11]
Manganin	4.82×10^{-7}	2.07×10^{6}	0.000002	[12]
Constantan	4.9×10^{-7}	2.04×10^{6}	0.000008	[13]
Stainless steel ${ }^{\text {[note 5] }}$	6.9×10^{-7}	1.45×10^{6}		[14]
Mercury	9.8×10^{-7}	1.02×10^{6}	0.0009	[12]
Nichrome ${ }^{[\text {note 6] }}$	1.10×10^{-6}	9.09×10^{5}	0.0004	[7]
GaAs	5×10^{-7} to 10×10^{-3}	5×10^{-8} to 10^{3}		[15]
Carbon (amorphous)	5×10^{-4} to 8×10^{-4}	1.25 to 2×10^{3}	-0.0005	[7][16]
Carbon (graphite) ${ }^{[\text {note 7] }}$	$2.5 \mathrm{e} \times 10^{-6}$ to $5.0 \times 10^{-6} / / \mathrm{b}$ asal plane 3.0×10^{-3} 」basal plane	2 to $3 \times 10^{5} / /$ basal plane $3.3 \times 10^{2} \perp$ basal plane		[17]
Carbon (diamond) ${ }^{\text {[note 8] }}$	1×10^{12}	$\sim 10^{-13}$		[18]
Germanium ${ }^{\text {[note 8] }}$	4.6×10^{-1}	2.17	-0.048	[7][8]
Sea water ${ }^{\text {[note 9] }}$	2×10^{-1}	4.8		[19]
In. . . Innte 1 nl	- $101 \cdot$ - 10.3	- An-4, r ans		\|ritatina mearlent

Piezoelectricity (rank 3 tensor)

AFM's, STM's
Quartz crystal oscillators
Surface acoustic wave generators
Pressure sensors - Epcos
Fuel injectors - Bosch
Inkjet printers
No inversion symmetry

Piezoelectric crystal classes: $1,2, \mathrm{~m}, 222, \mathrm{~mm} 2,4,-4,422,4 \mathrm{~mm},-42 \mathrm{~m}, 3,32,3 \mathrm{~m}, 6,-6,622,6 \mathrm{~mm},-62 \mathrm{~m}, 23,-43 \mathrm{~m}$

The 32 Crystal Classes

Tensor (Voigt) notation

We need a way to represent 3rd and 4th rank tensors in 2-d.

$$
\begin{array}{lll}
11 \rightarrow 1 & 12 \rightarrow 6 & 13 \rightarrow 5 \\
& 22 \rightarrow 2 & 23 \rightarrow 4 \\
& & 33 \rightarrow 3
\end{array}
$$

rank 3

$$
g_{36} \rightarrow g_{312}
$$

rank 4

$$
g_{14} \rightarrow g_{1123}
$$

Using Voigt notation implies that the tensor is symmetric in those two indices.

Symmetric Tensors

$$
\chi_{i j}^{E}=\frac{\partial P_{i}}{\partial E_{j}}=-\frac{\partial^{2} G}{\partial E_{i} \partial E_{j}}=\frac{\partial P_{j}}{\partial E_{i}}=\chi_{j i}^{E}
$$

$$
\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{12} & g_{22} & g_{23} \\
g_{13} & g_{23} & g_{33}
\end{array}\right]
$$

