Technische Universität Graz

Helium

Helium atom

$$
\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2} \Psi+\nabla_{2}^{2} \Psi\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|} \Psi-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \Psi+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|} \Psi=E \Psi
$$

$\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2} \quad \begin{aligned} & \text { is the probability to find one of the electrons at } r_{1} \\ & \text { and the other one at } r_{2} .\end{aligned}$

Helium atom

neglect the electron-electron interaction term

$$
H_{r e d}^{H e}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2} \Psi+\nabla_{2}^{2} \Psi\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|} \Psi-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \Psi+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-\vec{r}_{2}\right|} \Psi=E \Psi
$$

assume a product wave function

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\phi_{1}\left(\vec{r}_{1}\right) \phi_{2}\left(\vec{r}_{2}\right)
$$

Separation of variables (Trennung der Veränderlichen)

$$
\begin{gathered}
\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2} \phi_{1} \phi_{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|} \phi_{1} \phi_{2}=\frac{\hbar^{2}}{2 m} \nabla_{2}^{2} \phi_{1} \phi_{2}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \phi_{1} \phi_{2}+E \phi_{1} \phi_{2} \\
\text { divide by } \phi_{1} \phi_{2} \\
\frac{-\hbar^{2}}{2 m \varphi_{1}} \nabla_{1}^{2} \varphi_{1}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|}=E_{1}=\frac{\hbar^{2}}{2 m \varphi_{2}} \nabla_{2}^{2} \varphi_{2}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+E \\
\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2} \varphi_{1}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|} \varphi_{1}=E_{1} \varphi_{1} \quad \frac{-\hbar^{2}}{2 m} \nabla_{2}^{2} \varphi_{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \varphi_{2}=\left(E-E_{1}\right) \varphi_{2}
\end{gathered}
$$

Reduced Hamiltonian

$$
H_{\text {red }}^{H e}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2} \Psi+\nabla_{2}^{2} \Psi\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\overrightarrow{r_{1}}\right|} \Psi-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|} \Psi=E \Psi
$$

any product of atomic orbitals with $Z=2$ solves the reduced Hamiltonian

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\phi_{n 1}\left(\vec{r}_{1}\right) \phi_{n 2}\left(\vec{r}_{2}\right) \quad E=-\frac{13.6(2)^{2}}{n_{1}^{2}}-\frac{13.6(2)^{2}}{n_{2}^{2}}
$$

$$
\text { symmetric: } \quad \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{n 1}\left(\vec{r}_{1}\right) \phi_{n 2}\left(\vec{r}_{2}\right)+\phi_{n 1}\left(\vec{r}_{2}\right) \phi_{n 2}\left(\vec{r}_{1}\right)\right)
$$

antisymmetric: $\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{n 1}\left(\vec{r}_{1}\right) \phi_{n 2}\left(\vec{r}_{2}\right)-\phi_{n 1}\left(\vec{r}_{2}\right) \phi_{n 2}\left(\vec{r}_{1}\right)\right)$

Indistinguishable particles

$$
\begin{gathered}
\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)\right|^{2}=\left|\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)\right|^{2} \\
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)= \pm \Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)
\end{gathered}
$$

bosons $\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$
integer spin:
photons, phonons, ${ }^{4} \mathrm{He}$
fermions $\quad \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$
half integer spin:
electrons, neutrons, protons, ${ }^{3} \mathrm{He}$

Spin

Spin appears naturally in the relativistic formulation of quantum mechanics but in the nonrelativistic formulation, we just add the spins states.

$$
\begin{aligned}
& \uparrow=\text { spin up } \\
& \downarrow=\text { spin down }
\end{aligned}
$$

Spin orbitals: $\phi_{1 s} \uparrow, \phi_{1 s} \downarrow, \phi_{2 s} \uparrow, \phi_{2 s} \downarrow, \cdots$

Slater determinants

The antisymmetric solution can be written as a determinant,
$\Psi_{0}^{\mathrm{He}}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) & \phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) \\ \phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right) & \phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right)\end{array}\right|=\frac{1}{\sqrt{2}} \phi_{1 \mathrm{~s}}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 \mathrm{~s}}^{\mathrm{He}}\left(\vec{r}_{2}\right)\left(\uparrow\left(\vec{r}_{1}\right) \downarrow\left(\vec{r}_{2}\right)-\uparrow\left(\vec{r}_{2}\right) \downarrow\left(\vec{r}_{1}\right)\right)$

Exchanging two columns changes the sign of the determinant.
If two columns are the same, the determinant is zero $=$ Pauli exclusion.

Slater determinants

The antisymmetric N electron wave function can be written,

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{llll}
\phi_{1 s} \uparrow\left(\vec{r}_{1}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{1}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s} \uparrow\left(\vec{r}_{2}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{2}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{2}\right) \\
\vdots & \vdots & & \vdots \\
\phi_{1 s} \uparrow\left(\vec{r}_{N}\right) & \phi_{1 s} \downarrow\left(\vec{r}_{N}\right) & \cdots & \phi_{N} \uparrow\left(\vec{r}_{N}\right)
\end{array}\right| .
$$

Exchanging two columns changes the sign of the determinant.
If two columns are the same, the determinant is zero $=$ Pauli exclusion.
Dirac notation: $\quad \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\left|\phi_{1 s} \uparrow, \phi_{1 s} \downarrow, \cdots, \phi_{N} \uparrow\right\rangle$

Helium ground state

$$
H_{\text {total }}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|}
$$

Approximate antisymmetrized wave function (neglecting electronelectron interactions)

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \uparrow & \phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \downarrow \\
\phi_{1 s}^{H e}\left(\vec{r}_{2}\right) \uparrow & \phi_{1 s}^{H e}\left(\vec{r}_{2}\right) \downarrow
\end{array}\right|=\frac{\phi_{1 s}^{H e}\left(\vec{r}_{1}\right) \phi_{1 s}^{H e}\left(\vec{r}_{2}\right)}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Energy neglecting $e-e$ interactions

$$
E=2 \times \frac{-13.6 Z^{2}}{n^{2}}=-108.8 \mathrm{eV}
$$

$\begin{aligned} & \begin{array}{l}\text { Approximate ground state } \\ \text { evaluated with the total } \\ \text { Hamiltonian }\end{array}\end{aligned} \quad E=\frac{\langle\Psi| H_{\text {total }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=-74.83 \mathrm{eV}$

Matrix elements

$$
E_{0}^{\mathrm{He}} \approx \frac{\left\langle\Psi_{0}^{\mathrm{He}}\right| H_{\mathrm{total}}^{\mathrm{He}}\left|\Psi_{0}^{\mathrm{He}}\right\rangle}{\left\langle\Psi_{0}^{\mathrm{He}} \mid \Psi_{0}^{\mathrm{He}}\right\rangle}
$$

$\frac{\iiint \iiint \Psi^{*}\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) H \Psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2}}{\iiint \iiint \Psi^{*}\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \Psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) d x_{1} d y_{1} d z_{1} d x_{2} d y_{2} d z_{2}}$

Helium ground state

Try other wave functions in the full Hamiltonian

$$
\begin{gathered}
H_{\text {total }}=\frac{-\hbar^{2}}{2 m}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}\right|}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\vec{r}_{1}-\vec{r}_{2}\right|} \\
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\exp \left(\frac{-\alpha r_{1}}{a_{0}}\right) \exp \left(\frac{-\alpha r_{2}}{a_{0}}\right)
\end{gathered}
$$

Electron screening makes the wave function larger

$$
E=\frac{\langle\Psi| H_{\text {total }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

4.1 Helium

The results of the total energy of the helium ground state for different effective nuclear charges α are plotted in 1 . The minimum (and therfore best estimate) lies at

$$
\begin{align*}
& \alpha=(1.685 \pm 0.005) \\
& E=(-77.50 \pm 0.03) \mathrm{eV} \tag{14}
\end{align*}
$$

Student project Michael Scherbela, 2014

Slater's rules

Effective Nuclear Charge $Z_{\text {eff }}$

	1 s	$2 \mathrm{~s}, 2 \mathrm{p}$
H	1	
He	1.7	
Li	2.7	1.3
Be	3.7	1.95
B	4.7	2.6
C	5.7	3.25
N	6.7	3.9
O	7.7	4.55
Cl	8.7	5.2
Ne	9.7	5.85

Slater, J. C., Atomic Shielding Constants, Phys. Rev. 36, pp. 57-64, 1930. doi:10.1103/PhysRev.36.57

Helium ground state

$$
\begin{array}{cl}
e^{-2 r_{1} / a_{0}} e^{-2 r_{2} / a_{0}} & -74.83 \mathrm{eV} \\
e^{-\alpha r_{1} / a_{0}} e^{-\alpha r_{2} / a_{0}} & -77.4885 \mathrm{eV} \\
e^{-\alpha\left(r_{1}+r_{2}\right) / a_{0}}\left(1+c\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) & -78.6714 \mathrm{eV} \\
1078 \text { parameters } & -79.0142 \mathrm{eV}
\end{array}
$$

The true wave function cannot be written as a product of two one-electron wave functions.

Helium excited states

One electron in 1 s and one in $2 \mathrm{~s}, \quad \uparrow \uparrow, \downarrow \downarrow, \downarrow \uparrow$, and $\uparrow \downarrow$

$$
\begin{aligned}
& \Psi_{I}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{H}} \uparrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \uparrow \uparrow, \\
& \Psi_{I I}=\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{H}} \downarrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \downarrow \downarrow, \\
& \Psi_{I I I}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow\right), \\
& \Psi_{I V}=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{1}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{1}\right) \\
\phi_{1 s}^{\mathrm{He}} \downarrow\left(\vec{r}_{2}\right) & \phi_{2 s}^{\mathrm{He}} \uparrow\left(\vec{r}_{2}\right)
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow\right) . \\
& E=\frac{\langle\Psi| H_{r e d}^{H e}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=-\frac{13.6^{*} 2^{2}}{1^{2}}-\frac{13.6^{*} 2^{2}}{2^{2}}=-68 \mathrm{eV}
\end{aligned}
$$

The antisymmetric solution $\Psi=0$ for $\vec{r}_{1}=\vec{r}_{2}$.

Transform to symmetric and antisymmetric orbital solutions

$$
\begin{gathered}
\Psi_{I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \uparrow \uparrow, \\
\Psi_{I I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right) \downarrow \downarrow, \\
\Psi_{I I I}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow\right), \\
\Psi_{I V}=\frac{1}{\sqrt{2}}\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \downarrow \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \uparrow-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \uparrow \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right) \downarrow\right) .
\end{gathered}
$$

$$
\Psi_{V}=\frac{1}{\sqrt{2}}\left(\Psi_{I I I}+\Psi_{I V}\right)=\frac{1}{2}\left(\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)-\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right)(\uparrow \downarrow+\downarrow \uparrow)\right.
$$

$$
\Psi_{V I}=\frac{1}{\sqrt{2}}\left(\Psi_{I I I}-\Psi_{I V}\right)=\frac{1}{2}\left(\left(\phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)+\phi_{2 s}^{\mathrm{He}}\left(\vec{r}_{1}\right) \phi_{1 s}^{\mathrm{He}}\left(\vec{r}_{2}\right)\right)(\uparrow \downarrow-\downarrow \uparrow)\right.
$$

Helium excited states

$$
\begin{aligned}
& H_{\text {red }}^{\mathrm{He}} \\
& H_{\text {total }}^{\mathrm{He}} \\
& \text { exact }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-13.6(2)^{2}}{1^{2}} \frac{-13.6(2)^{2}}{2^{2}} \\
& \frac{-13.6 Z^{2}}{n^{2}} \stackrel{/}{\lambda} \\
& 2 \times \frac{-13.6(2)^{2}}{1^{2}} \\
& 1 s^{2} \quad-77.49 \mathrm{eV} \\
& 1 \mathrm{~s}^{2} \quad 1^{1} \mathrm{~S} \quad-78.99 \mathrm{eV} \text { singlet }
\end{aligned}
$$

Energy Levels of Neutral Helium (He I)

Select an element to access data

${ }^{1} \mathrm{H}$																${ }^{2} \mathrm{He}$
${ }^{3} \mathrm{Li}$	${ }^{4} \mathrm{Be}$										$5_{\text {B }}$	${ }^{6} \mathrm{C}$	${ }^{7} \mathrm{~N}$	8_{0}	${ }^{9} \mathrm{~F}$	${ }^{10} \mathrm{Ne}$
${ }^{11} \mathrm{Na}$	${ }^{12} \mathrm{Mg}$										${ }^{13}{ }_{\text {Al }}$	${ }^{14} \mathrm{Si}$	${ }^{15} \mathrm{P}$	${ }^{16} \mathrm{~S}$	${ }^{17} \mathrm{Cl}$	${ }^{18_{\text {Ar }}}$
${ }^{19} \mathrm{~K}$	${ }^{20} \mathrm{Ca}{ }^{21} \mathrm{Sc}$	${ }^{22_{\mathrm{Ti}}}$	$\left.{ }^{23} \mathrm{~V}\right\|^{2}$	${ }^{24} \mathrm{Cr}{ }^{2}$	${ }^{25} \mathrm{Mn}$	${ }^{26} \mathrm{Fe}{ }^{2}$	${ }^{27} \mathrm{Co}$	${ }^{28} 8_{\mathrm{Ni}}$	${ }^{29} \mathrm{Cu}$	${ }^{30} \mathrm{Zn}$	${ }^{31} \mathrm{Ga}$	${ }^{32} \mathrm{Ge}$	${ }^{33} \mathrm{AS}$	${ }^{34} \mathrm{Se}$	${ }^{35} \mathrm{Br}$	${ }^{36} \mathrm{Kr}$
${ }^{37} \mathrm{Rb}$	${ }^{38} \mathrm{Sr}{ }^{39} \mathrm{Y}$	${ }^{40} \mathrm{zr}{ }^{4}$	${ }^{41}{ }_{\mathrm{Nb}}{ }^{4}$	${ }^{42} \mathrm{MO}$	${ }^{43} \mathrm{TC}$	${ }^{44} \mathrm{Ru}$	${ }^{45} \mathrm{Rh}$	${ }^{46} \mathrm{Pd}$	${ }^{47} \mathrm{Ag}$	${ }^{48} \mathrm{Cd}$	${ }^{49}$ In	${ }^{50} \mathrm{Sn}$	${ }^{51} \mathrm{Sb}$	${ }^{52} \mathrm{Te}$	${ }^{53}$ I	${ }^{54} \mathrm{Xe}$
${ }^{55} \mathrm{Cs}$	${ }^{56} \mathrm{Ba}$	$\left.{ }^{72} \mathrm{Hf}\right\|^{7}$	${ }^{73} \mathrm{Ta}$	${ }^{74}$ W5	${ }^{75} \mathrm{Re}$	${ }^{76} \mathrm{Os}{ }^{7}$	${ }^{77}$ Ir	${ }^{78} \mathrm{Pt}$	${ }^{79} \mathrm{Au}$	${ }^{80} \mathrm{Hg}$	${ }^{81}{ }_{\text {T1 }}$	${ }^{82} \mathrm{~Pb} \mid$	${ }^{83} \mathrm{Bi}$	${ }^{84} \mathrm{PO}$	At	${ }^{86} \mathrm{Rn}$
${ }^{87} \mathrm{Fr}$	${ }^{88} \mathrm{Ra} \mid+$															
* Lanthanides		${ }^{57} \mathrm{La}{ }^{5}$	${ }^{58} \mathrm{Ce}{ }^{5}$	${ }^{59} \mathrm{Pr}$	${ }^{60} \mathrm{Nd}$	${ }^{61} \mathrm{Pm}$	${ }^{62} \mathrm{Sm}$	${ }^{63} \mathrm{Eu}$	${ }^{64} \mathrm{Gd}$	${ }^{65} \mathrm{~Tb}$	${ }^{66}$ Dy	${ }^{67} \mathrm{Ho}$	${ }^{68}$ Er	Tm	Yb	${ }^{71} \mathrm{Lu}$
${ }^{+}$Actinides		$889^{89}{ }^{\text {c }}{ }^{9}$	${ }^{90} \mathrm{Th}{ }^{9}$	${ }^{91} \mathrm{~Pa}$	${ }^{92} \mathrm{U}$	${ }^{93} \mathrm{~Np}$ \|	${ }^{94} \mathrm{Pu}$	${ }^{95} \mathrm{Amm}$	${ }^{96} \mathrm{Cm}$	${ }^{97} \mathrm{BK} \mid$	${ }^{98} \mathrm{Cf}$	${ }^{99}$ Es				

$E=h f=h c / \lambda$

Names refer to approximate solutions

http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable5.htm

Configuration	Term	J	Level (cm^{-1})	Ref.
$1 s^{2}$	${ }^{1} \mathrm{~S}$	0	0.000	M02
1 s 2 s	${ }^{3} \mathrm{~S}$	1	159855.9745	M02
1 s 2 s	${ }^{1} \mathrm{~S}$	0	166277.4403	M02
$1 s 2 p$	${ }^{3} \mathrm{P}^{\circ}$	2	169086.7666	M02
		1	169086.8430	M02
		0	169087.8309	M02
$1 s 2 p$	${ }^{1} \mathrm{P}^{\circ}$	1	171134.8970	M02
1 s 3 s	${ }^{3} \mathrm{~S}$	1	183236.7918	M02
1 s 3 s	${ }^{1} \mathrm{~S}$	0	184864.8294	M02
$1 s 3 p$	${ }^{3} \mathrm{P}^{\circ}$	2	185564.5620	M02
		1	185564.5840	M02
		0	185564.8547	M02
1 s 3 d	${ }^{3} \mathrm{D}$	3	186101.5463	M02
		2	186101.5488	M02
		1	186101.5930	M02
1 s 3 d	${ }^{1} \mathrm{D}$	2	186104.9668	M02
1 s 3 p	${ }^{1} \mathrm{P}{ }^{\circ}$	1	186209.3651	M02
$1 s 4 p$	${ }^{1} \mathrm{P}^{\circ}$	1	191492.7120	M02
$\mathrm{He} \operatorname{II}\left({ }^{2} \mathrm{~S}_{1 / 2}\right)$	Limit		198310.6691	M02

[^0]Many electron atoms

Many electrons

Consider a gold atom (79 electrons)

$$
\begin{aligned}
& i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}} \cdots+\frac{d^{2}}{d z_{79}^{2}}\right) \Psi-\frac{79 e^{2}}{4 \pi \varepsilon_{0} r_{j}} \Psi \cdots+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{i j}} \Psi \\
& 3 \times 79=237 \text { terms } \quad 79 \text { terms } \frac{79 \times 78}{2}=3081 \text { terms }
\end{aligned}
$$

$\Psi\left(x_{1}, y_{1}, z_{1}, \cdots x_{79}, y_{79}, z_{79}, t\right)$ is a complex function in 237 dimensions

$$
\left|\Psi\left(\vec{r}_{1}, \cdots \vec{r}_{N}\right)\right|^{2} \quad \begin{aligned}
& \text { is the joint probability of finding an electron } \\
& \\
& \text { at position } r_{1}, r_{2}, \ldots r_{\mathrm{N}} .
\end{aligned}
$$

Numerical solution of the Schrödinger equation for one electron

$$
i \hbar \frac{\partial \Psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \Psi
$$

> Discretize Ψ to solve numerically. For one electron $\sim 10^{6}$ elements are needed.

Numerical solution for many electrons

For a numerical solution, divide Hilbert space along each axis into 100 divisions.

$$
100^{237}=10^{474}
$$

There are 10^{68} atoms in the Milky Way galaxy

There are $\sim 10^{80}$ atoms in the observable universe

Intractable problem

We know the equation that has to be solved. We know how to solve it but we don't have the computer resources to calculate the answer.

A Matlab that will calculate the time evolution of an n-electron

http://lamp.tu-graz.ac.at/~hadley/ss1/studentpresentations/2011/n_electrons.m

Quantum computation

Sometimes it is possible to map one intractable problem onto another.

If you map an intractable problem onto a system of interacting electrons and then measure the energy levels of the electron system, you can find solutions to the intractable problem.

Many-electron systems

> In such a quantum system, the repeated interactions between particles create quantum correlations, or entanglement. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes analytical calculations impractical. In fact, many-body theoretical physics ranks among the most computationally intensive fields of science.
> http://en.wikipedia.org/wiki/Many-body_problem

From a fundamental point of view it is impossible to describe electrons in a metal correctly - Ashcroft and Mermin

Many electrons

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x_{1}^{2}} \cdots+\frac{d^{2}}{d z_{79}^{2}}\right) \Psi-\sum_{j} \frac{79 e^{2}}{4 \pi \varepsilon_{0} r_{j}} \Psi+\sum_{i<j} \frac{e^{2}}{4 \pi \varepsilon_{0} x_{i}} \Psi=E \Psi
$$

The solutions to the reduced Hamiltonian are products of atomic orbitals. Include electron - electron interactions with Slater's rules.

Orbital approximation

- Assign the electrons to an atomic orbital and a spin, use Slater's rules
- Construct an antisymmetrized wave function using a Slater determinant
- Evaluate the energy with the Hamiltonian that includes the electronelectron interactions

$$
\begin{gathered}
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\frac{1}{\sqrt{N!} \mid}\left|\begin{array}{cccc}
\phi_{1 s}^{z} \uparrow\left(\vec{r}_{1}\right) & \phi_{1 s}^{z} \uparrow\left(\vec{r}_{3}\right) & \cdots & \phi_{1 s}^{z} \uparrow\left(\vec{r}_{N}\right. \\
\phi_{1 s}^{z} \downarrow\left(\vec{r}_{1}\right) & \phi_{1 s}^{z} \downarrow\left(\vec{r}_{2}\right) & & \phi_{1 s}^{z} \downarrow\left(\vec{r}_{N}\right) \\
\vdots & & \ddots & \vdots \\
\phi_{N}^{z} \downarrow\left(\vec{r}_{1}\right) & \phi_{N}^{z} \downarrow\left(\vec{r}_{2}\right) & \cdots & \phi_{N}^{z} \downarrow\left(\vec{r}_{N}\right)
\end{array}\right| \\
E=\frac{\langle\Psi| H_{\text {toata }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
\end{gathered}
$$

Electron configurations

13 Al aluminium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}{ }^{1}$
14 Si silicon	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
15 P phosphorus	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$
16 S sulfur	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
17 Cl chlorine	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
18 Ar argon	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$	$=[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
19 K potassium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$	$=[\mathrm{Ar}] 4 \mathrm{~s}^{1}$
20 Ca calcium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$	$=[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
21 Sc scandium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$
22 Ti titanium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
23 V vanadium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$	$=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
24 Cr chromium	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
25 Mn manganese	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$
26 Fe iron	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
27 Co cobalt	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$
28 Ni nickel	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
29 Cu copper	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
30 Zn zinc	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$	$=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2}$

http://lamp.tu-graz.ac.at/~hadley/ss1/molecules/atoms/review3.php

Filling of electron shells

Ni: $3 d^{8} 4 s^{2} \quad C u: 3 d^{10} 4 s^{1}$

Why isn't Ni $3 d^{9} 4 s^{1}$ or $3 d^{10}$?

You can evaluate the energy of any electron configuration.

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{28}\right)=\left|\phi_{1 s}^{Z_{\text {eff }}} \uparrow\left(\vec{r}_{1}\right), \phi_{1 s}^{Z_{e f f}} \downarrow\left(\vec{r}_{2}\right), \ldots, \phi_{3 d}^{Z_{\text {eff }}} \uparrow\left(\vec{r}_{27}\right) \phi_{4 s}^{Z_{e f f}} \uparrow\left(\vec{r}_{29}\right)\right\rangle
$$

$$
E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Hund's rules

Pauli exclusion

The sign of the wave function must change when two electrons are exchanged

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\phi_{1}\left(\vec{r}_{1}\right) \uparrow & \phi_{2}\left(\vec{r}_{1}\right) \downarrow \\
\phi_{1}\left(\vec{r}_{2}\right) \uparrow & \phi_{2}\left(\vec{r}_{2}\right) \downarrow
\end{array}\right|=\frac{1}{\sqrt{2}}\left(\phi_{1}\left(\vec{r}_{1}\right) \uparrow \phi_{2}\left(\vec{r}_{2}\right) \downarrow-\phi_{1}\left(\vec{r}_{2}\right) \uparrow \phi_{2}\left(\vec{r}_{1}\right) \downarrow\right)
$$

If two rows (or columns) are exchanged, the wave function changes sign.

If two rows (or columns) are the same, the determinant is zero.

The Pauli exclusion principle only holds in the approximation where the many electron wave function can be written as a product of single electron wave functions, only one electron can occupy each single electron state.

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)=\left|\phi_{1 s} \uparrow, \phi_{1 s} \downarrow, \cdots, \phi_{N} \uparrow\right\rangle
$$

Atomic physics summary

Solutions to the Schrödinger equation accurately describe the observed energy levels in atoms.

We know the equation that needs to be solved but it is intractable.
A common first approximation is the orbital approximation: Assign the electrons to an atomic orbital and a spin and construct an antisymmetrized product of spin orbitals using a Slater determinant.

The energy is then evaluated including the electron-electron interactions.

$$
E=\frac{\langle\Psi| H_{\text {total }}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

[^0]: Technische Universität Graz

