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Phonon bandstructures
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and similar expressions for the y and z motion
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These are eigenfunctions of T.

Normal modes are eigenfunctions of T
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Substitute the eigenfunctions of T into Newton's laws.

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/fcc/fcc.html



For every k there are 3 solutions for . 



Phonon dispersion Au
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Materials with the same crystal structure will have 
similar phonon dispersion relations 

Cu

Au



Phonon DOS fcc
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Phonon dispersion bcc



Phonon dispersion Fe

From Springer Materials: Landholt Boernstein Database



Phonon DOS Fe

D()

From Springer Materials: Landholt Boernstein Database

C2/C1 = 0

C2/C1 = 1/6

D()



Next nearest neighbors (simple cubic)

D() C2/C1 = 0 C2/C1 = 1/6 C2/C1 = 1/3

C2/C1 = 1/2

D()
C2/C1 = 1

Sometimes the 5th neighbors are included.



NaCl

2 atoms/unit cell

6 equations

3 acoustic and 
3 optical branches
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NaCl

Two atoms per primitive unit cell

Si



CsCl
M1 = M2

M1 = 5M2M1 = 2M2

M1 = 1.1 M2

Hannes Brandner



3 dimensions 

N atoms

3N normal modes

p atoms per unit cell

N/p unit cells = k vectors

3p branches to the dispersion 
relation

3 acoustic modes (1 longitudinal, 2 
transverse)

3p - 3 optical modes



k



Silicon phonon dispersion, DOS

Different speeds of sound for different directions 
and polarizations causes dispersion of pulses.



Poisson's ratio
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E - Elastic constant
 - Poisson's ratio
 - density

If the density is known,  you can determine E and .
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Two atoms per primitive unit cell





Ge, C, a-Sn ?



Inelastic neutron scattering

Diffraction condition for elastic scattering

k k G  
  

The whole crystal recoils with momentum G




Diffraction condition for inelastic scattering

phk K k G   
  

phK


is the phonon momentum

Phonon dispersion relations are determined experimentally by 
inelastic neutron diffraction
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Thermal phonons have the right wavelength, slow them down by scattering



long wavelength limit 
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The solutions to the linear chain are the same as the solutions to the wave 
equation for |k|<<p/a.
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1-d wave equation
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long wavelength limit 
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At low T, there are only long wavelength states 
occupied.

Phonons - long wavelength, 
low temperature limit
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Specific heat of 
insulators at low 
temperatures

Speed of sound
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Density of states:

3 polarizations



Empty lattice approximation 

Use the speed of sound 
instead of the speed of 
light.

3 acoustic branches
3p - 3 optical branches



Thermal properties 
1. Determine the dispersion relation:

Write down the equations of motion (masses and springs).

The solutions to these equations will be eigen functions of T 

Substitute the eigen functions of T into the equations of motion to 
determine the dispersion relation. 

2. Determine the density of states numerically from the dispersion 
relation

For every allowed k, find all corresponding values of . 

( )D 
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Specific Heat 

http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2cv.html



Heat capacity / specific heat 

Specific heat is the measure of the heat energy required to increase 
the temperature of a unit quantity of a substance by a certain 
temperature interval. 

Heat capacity is the measure of the heat energy required to increase the 
temperature of an object by a certain temperature interval. 

For solids, the heat capacity at constant volume and heat capacity at 
constant pressure are almost the same.

The heat capacity was historically important for understanding 
solids.



Dulong and Petit (Classical result) 

Equipartition: 1
2 Bk T per quadratic term in energy

internal energy: 3 Bu nk T n = atomic density

specific heat: 3v B

du
c nk

dT
 

experiments: heat capacity goes to zero at zero temperature

Pierre Louis Dulong Alexis Therese Petit 


