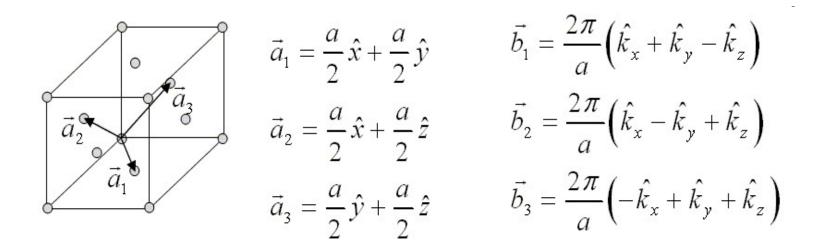


Technische Universität Graz

Institute of Solid State Physics

Phonon bandstructures

fcc



$$\begin{split} m \frac{d^{2}u_{lmn}^{x}}{dt^{2}} &= \frac{C}{2} \Big[\Big(u_{l+1mn}^{x} - u_{lmn}^{x} \Big) + \Big(u_{l-1mn}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm+1n}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm-1n}^{x} - u_{lmn}^{x} \Big) \\ &+ \Big(u_{l+1mn-1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{l-1mn+1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm+1n-1}^{x} - u_{lmn}^{x} \Big) + \Big(u_{lm-1n+1}^{x} - u_{lmn}^{x} \Big) \\ &+ \Big(u_{l+1mn}^{y} - u_{lmn}^{y} \Big) + \Big(u_{l-1mn}^{y} - u_{lmn}^{y} \Big) - \Big(u_{lm+1n-1}^{y} - u_{lmn}^{y} \Big) - \Big(u_{lm-1n+1}^{y} - u_{lmn}^{y} \Big) \\ &+ \Big(u_{lm+1n}^{z} - u_{lmn}^{z} \Big) + \Big(u_{lm-1n}^{z} - u_{lmn}^{z} \Big) - \Big(u_{l+1mn-1}^{z} - u_{lmn}^{z} \Big) - \Big(u_{l-1mn+1}^{z} - u_{lmn}^{z} \Big) \Big] \end{split}$$

and similar expressions for the y and z motion

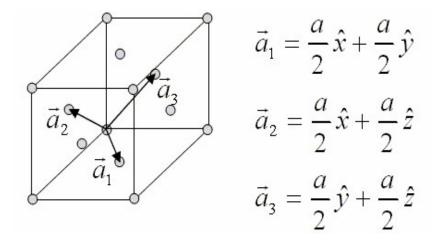
Normal modes are eigenfunctions of T

$$u_{lmn}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$u_{lmn}^{y} = u_{\vec{k}}^{y} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$u_{lmn}^{z} = u_{\vec{k}}^{z} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

These are eigenfunctions of T.

$$T_{pqr}u_{lmn}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot(\vec{a}_{1}+p\vec{a}_{1})+m\vec{k}\cdot(\vec{a}_{2}+q\vec{a}_{2})+n\vec{k}\cdot(\vec{a}_{3}+r\vec{a}_{3})-\omega t\right)\right)$$
$$= \exp\left(i\left(lp\vec{k}\cdot\vec{a}_{1}+qm\vec{k}\cdot\vec{a}_{2}+rn\vec{k}\cdot\vec{a}_{3}\right)\right)u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$
$$= \exp\left(i\left(lp\vec{k}\cdot\vec{a}_{1}+qm\vec{k}\cdot\vec{a}_{2}+rn\vec{k}\cdot\vec{a}_{3}\right)\right)u_{lmn}^{x}$$

fcc

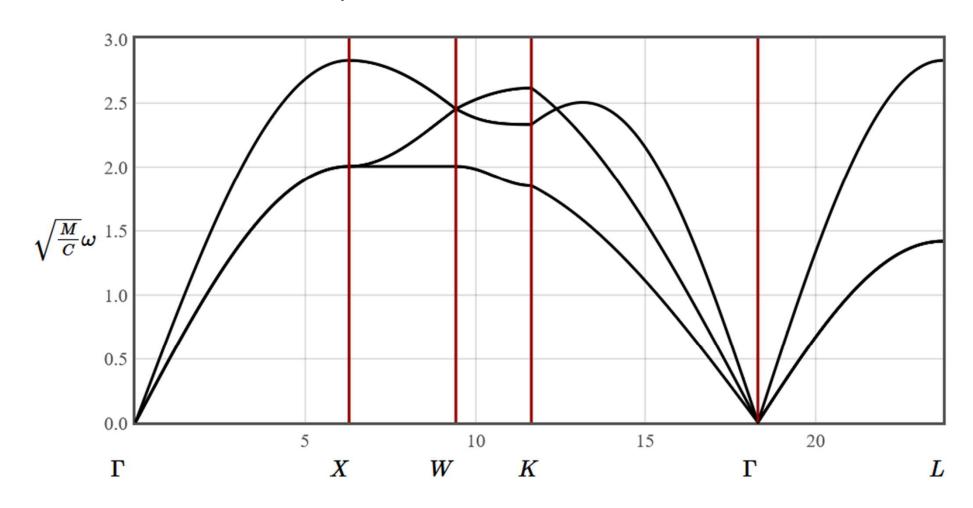


Substitute the eigenfunctions of *T* into Newton's laws.

$$u_{lmn}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(l\vec{k}\cdot\vec{a}_{1}+m\vec{k}\cdot\vec{a}_{2}+n\vec{k}\cdot\vec{a}_{3}\right)\right) = u_{\vec{k}}^{x} \exp\left(i\left(\frac{(l+m)k_{x}a}{2} + \frac{(l+n)k_{y}a}{2} + \frac{(m+n)k_{z}a}{2}\right)\right).$$

$$4 - \cos\left(\frac{k_{x}a}{2} + \frac{k_{y}a}{2}\right) - \cos\left(\frac{k_{x}a}{2} - \frac{k_{y}a}{2}\right) - \cos\left(\frac{k_{y}a}{2} -$$

http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/fcc/fcc.html



For every *k* there are 3 solutions for ω .

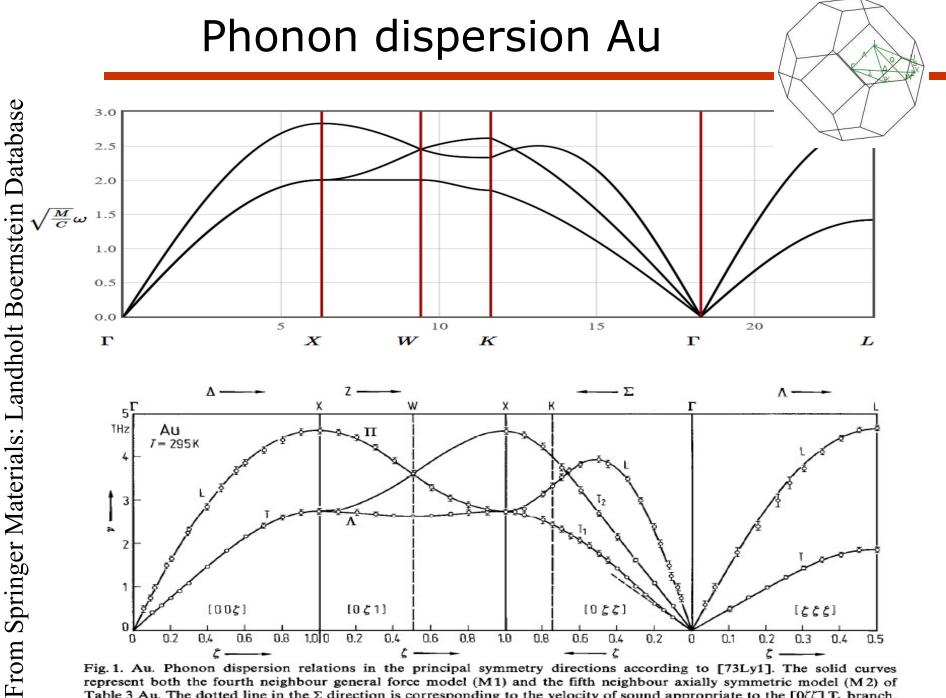


Fig. 1. Au. Phonon dispersion relations in the principal symmetry directions according to [73Ly1]. The solid curves represent both the fourth neighbour general force model (M1) and the fifth neighbour axially symmetric model (M2) of Table 3 Au. The dotted line in the Σ direction is corresponding to the velocity of sound appropriate to the $[0\zeta\zeta]$ T₁ branch.

Materials with the same crystal structure will have similar phonon dispersion relations

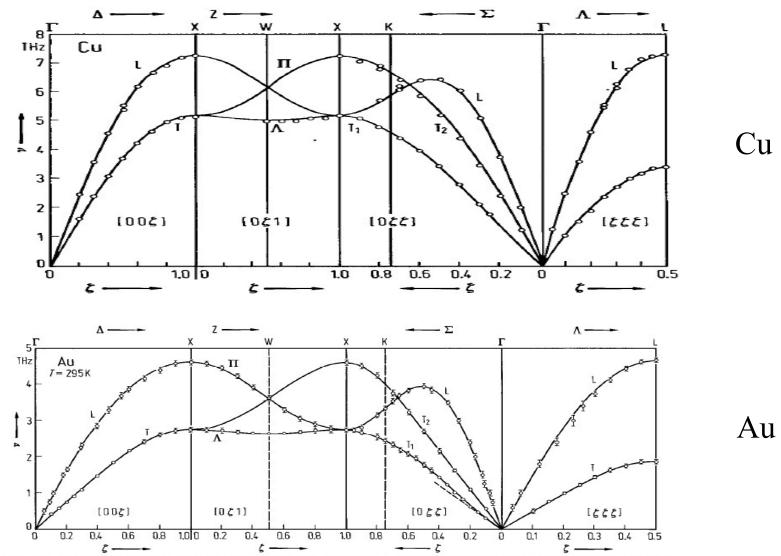
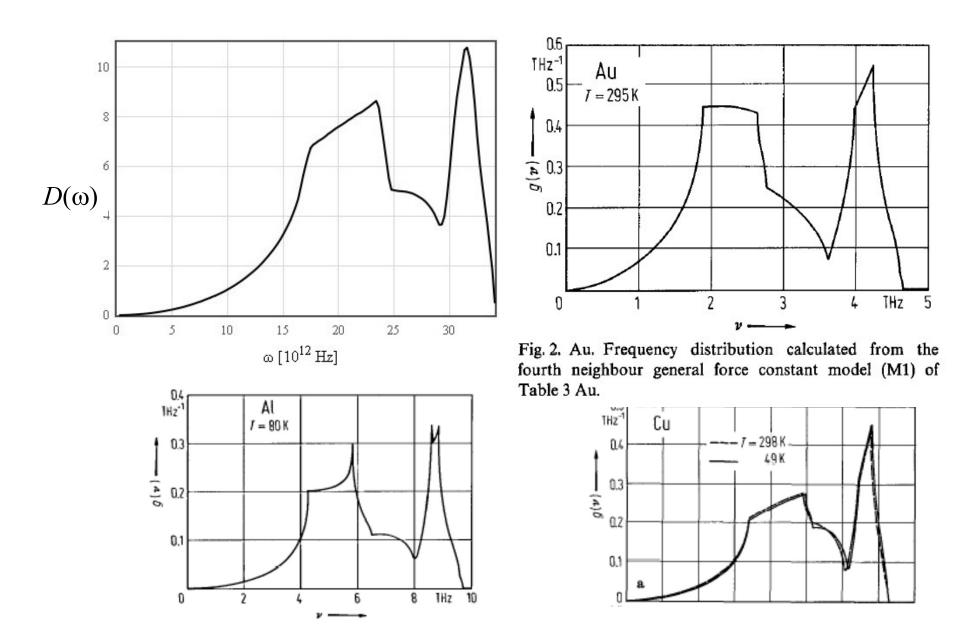
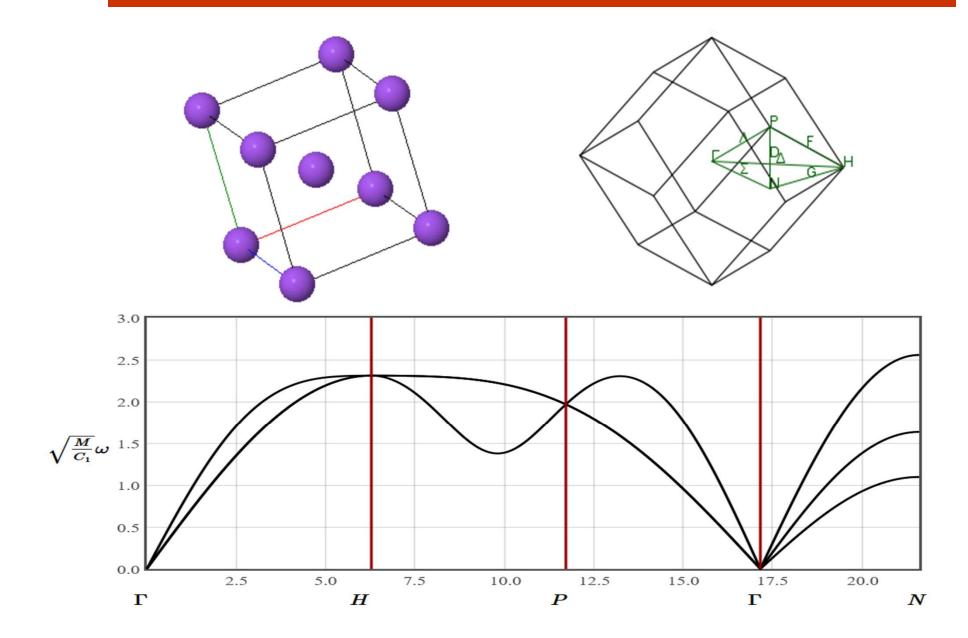


Fig. 1. Au. Phonon dispersion relations in the principal symmetry directions according to [73Ly1]. The solid curves represent both the fourth neighbour general force model (M1) and the fifth neighbour axially symmetric model (M2) of Table 3 Au. The dotted line in the Σ direction is corresponding to the velocity of sound appropriate to the [0 $\zeta\zeta$] T₁ branch.

Phonon DOS fcc



Phonon dispersion bcc



Phonon dispersion Fe

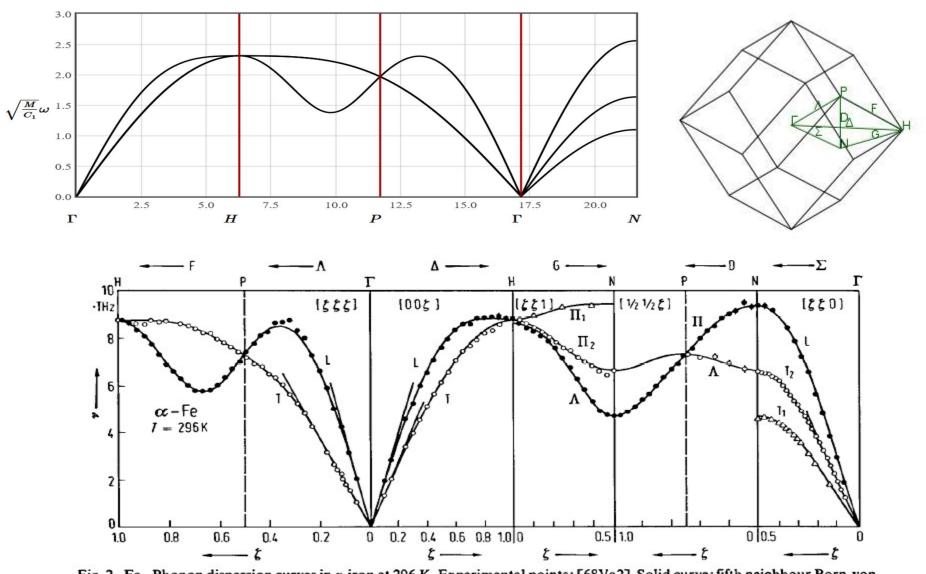
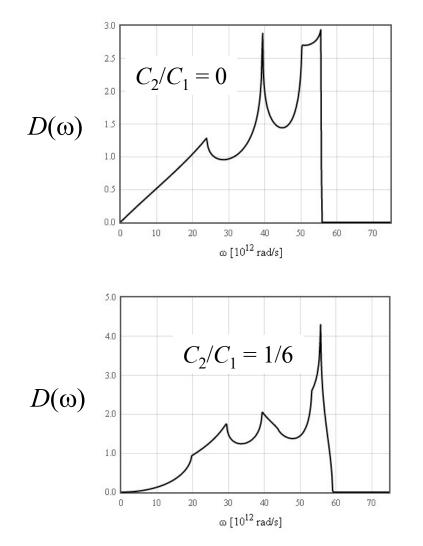


Fig. 2. Fe. Phonon dispersion curves in α-iron at 296 K. Experimental points: [68Va2]. Solid curve: fifth neighbour Born-von Karman model (Table 3 Fe [68Va2]). From Springer Materials: Landholt Boernstein Database

Phonon DOS Fe



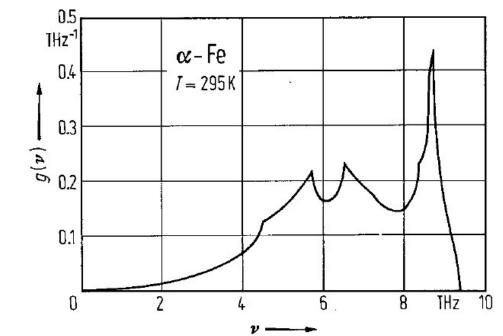
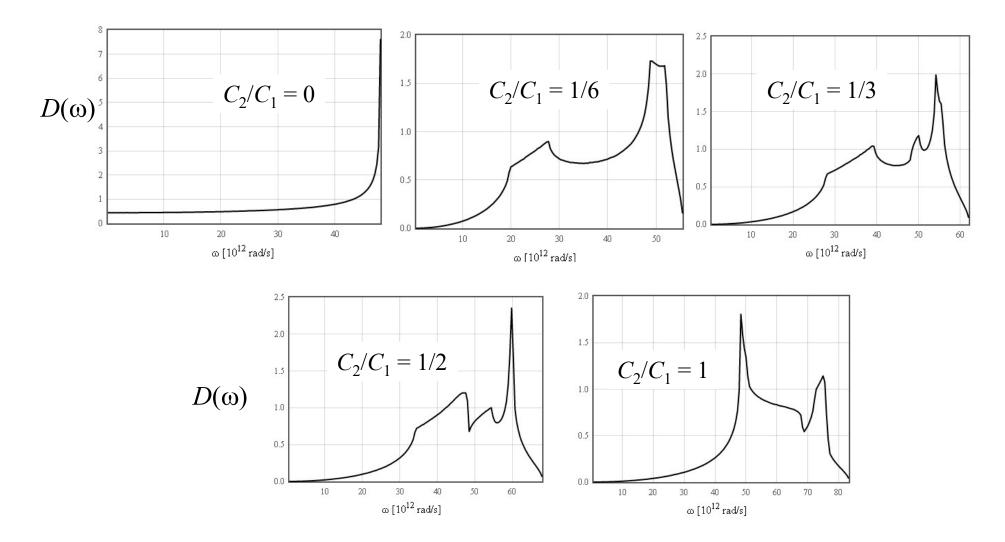


Fig. 3. Fe. Frequency spectrum of α -iron at 295 K calculated from the Born-von Karman force constants of Table 3 Fe [67Mi1].

From Springer Materials: Landholt Boernstein Database

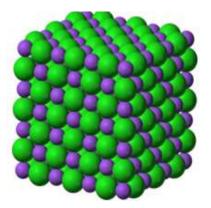
Next nearest neighbors (simple cubic)



Sometimes the 5th neighbors are included.

x - Richtung:

NaCl



2 atoms/unit cell

6 equations

3 acoustic and3 optical branches

$$M_1 \frac{d^2 u_{nml}^x}{dt^2} = C \left(-2u_{nml}^x + v_{(n-1)m(l-1)}^x + v_{n(m-1)l}^x \right)$$

$$M_2 \frac{d^2 v_{nml}^x}{dt^2} = C \left(-2v_{nml}^x + u_{(n+1)m(l+1)}^x + u_{n(m+1)l}^x \right)$$

y - Richtung:

$$M_1 \frac{d^2 u_{nml}^y}{dt^2} = C \left(-2u_{nml}^y + v_{(n-1)(m-1)l}^y + v_{nm(l-1)}^y \right)$$

$$M_2 \frac{d^2 v_{nml}^y}{dt^2} = C \left(-2v_{nml}^y + u_{(n+1)(m+1)l}^y + u_{nm(l+1)}^y \right)$$

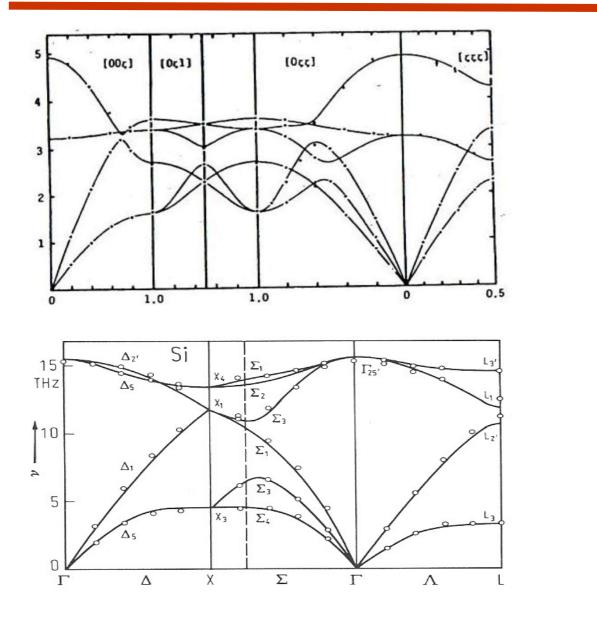
z - Richtung:

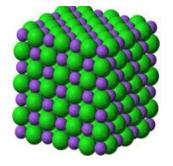
$$M_1 \frac{d^2 u_{nml}^z}{dt^2} = C \left(-2u_{nml}^z + v_{n(m-1)(l-1)}^z + v_{(n-1)ml}^z \right)$$

$$M_2 \frac{d^2 v_{nml}^z}{dt^2} = C \left(-2v_{nml}^z + u_{n(m+1)(l+1)}^z + u_{(n+1)ml}^z \right)$$

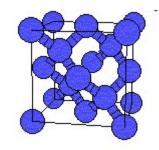
$$u_{nml}^{x} = u_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right) \qquad v_{nml}^{x} = v_{\vec{k}}^{x} \exp\left(i\left(\vec{k}\cdot\vec{a}_{1}+\vec{k}\cdot\vec{a}_{2}+\vec{k}\cdot\vec{a}_{3}-\omega t\right)\right)$$

Two atoms per primitive unit cell



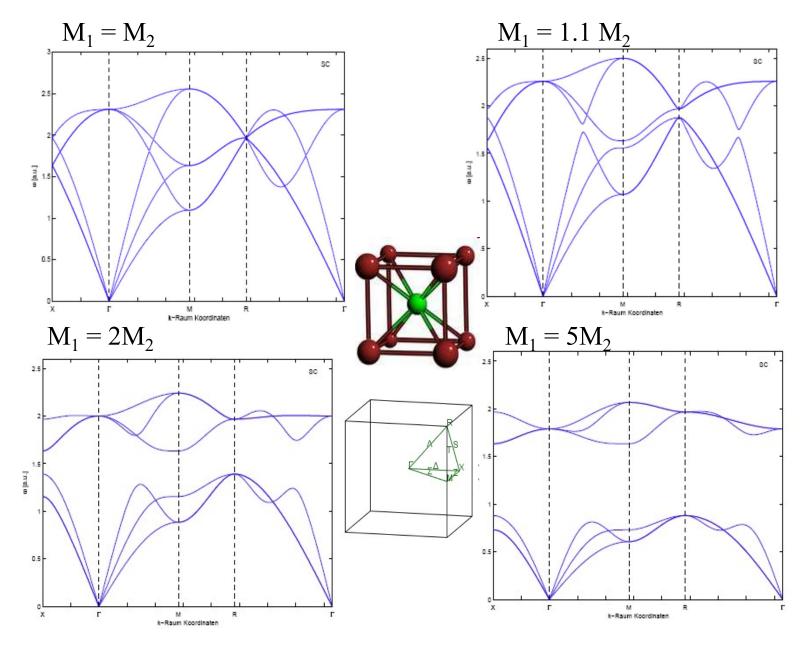


NaCl



Si

Hannes Brandner



3 dimensions

N atoms

3N normal modes

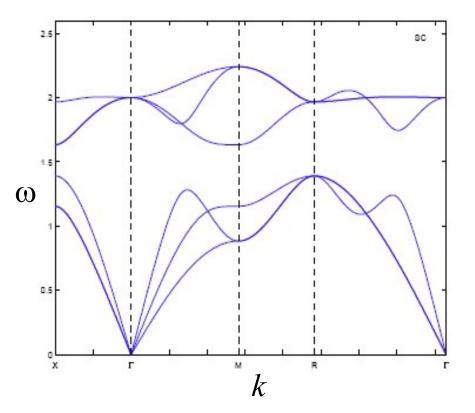
p atoms per unit cell

N/p unit cells = k vectors

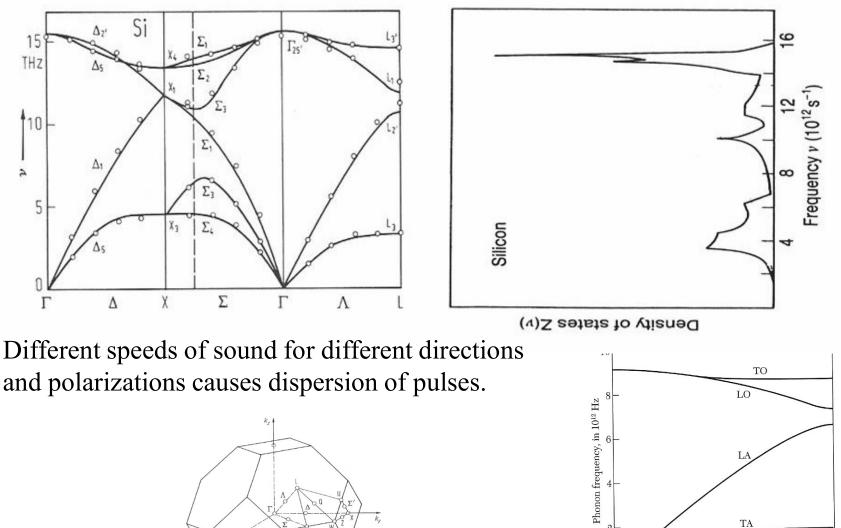
3p branches to the dispersion relation

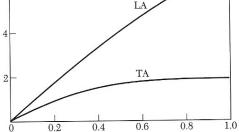
3 acoustic modes (1 longitudinal, 2 transverse)

3p - 3 optical modes



Silicon phonon dispersion, DOS



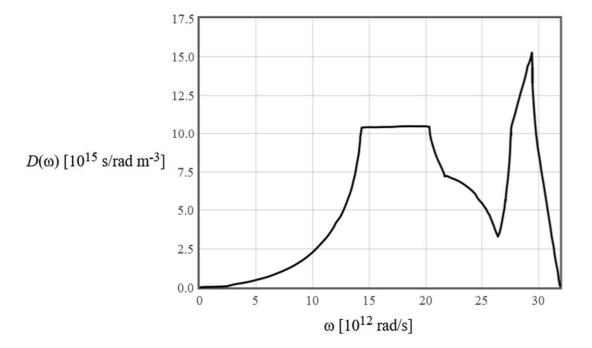


 K/K_{max} , in [111] direction



Figure 8a Phonon dispersion relations in the [111] direction in germanium at 80 K. The two TA phonon branches are horizontal at the zone boundary position, $K_{\text{max}} = (2\pi/a)(\frac{1}{2}\frac{1}{2}\frac{1}{2})$. The LO and TO branches coincide at K = 0; this also is a consequence of the crystal symmetry of Ge. The results were obtained with neutron inelastic scattering by G. Nilsson and G. Nelin.

If the density is known, you can determine E and v.



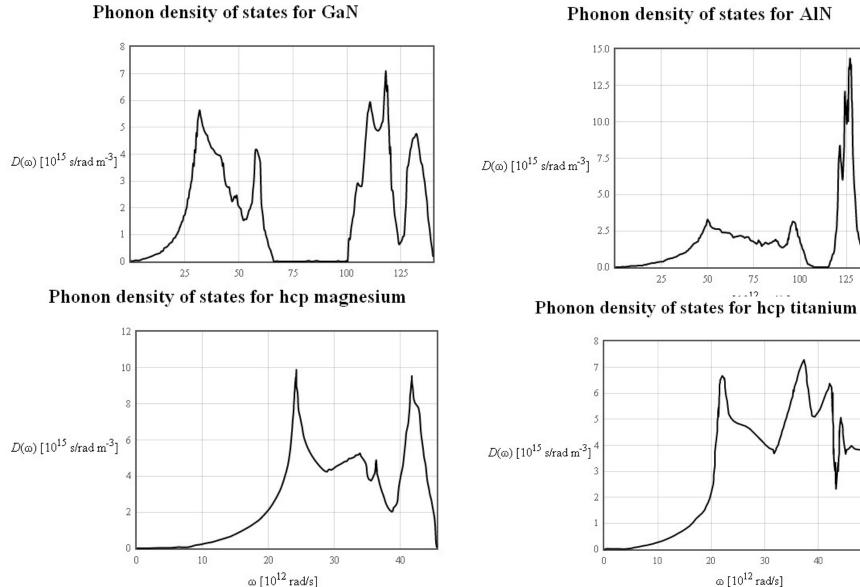
Phonon density of states for fcc silver

The atomic density is taken to be 5.86×10^{28} m⁻³. Each atom has three degrees of freedom so the integral over all frequencies is $3 \times 5.86 \times 10^{28}$ m⁻³. The data is from <u>doi: 10.1007/b19988</u>.

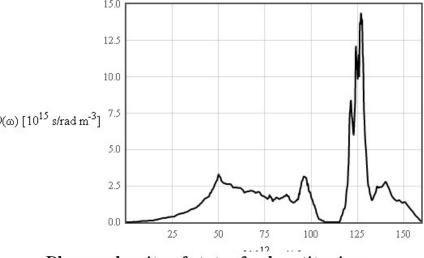
T = 296 K

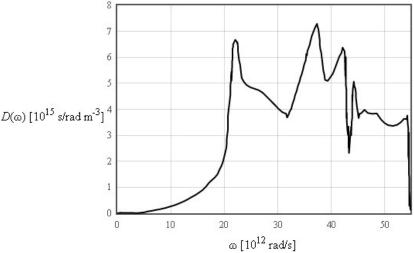
ω [rad/s]	$D(\omega)$ [s rad ⁻¹ m ⁻³]
0.0000 0.0	000
5.7327e+10	6.8161e+12
4.0123e+11	2.3856e+13
7.4510e+11	3.0672e+13
1.0890e+12	3.4080e+13
1.4233e+12	4.0897e+13
1.7624e+12	5.1121e+13
2.0967e+12	5.7937e+13
2.4120e+12	7.4977e+13
2.7177e+12	1.2610e+14
3.0379e+12	1.8744e+14
3.3723e+12	2.3516e+14
2 71620112	2 72610111

Two atoms per primitive unit cell



Phonon density of states for AlN





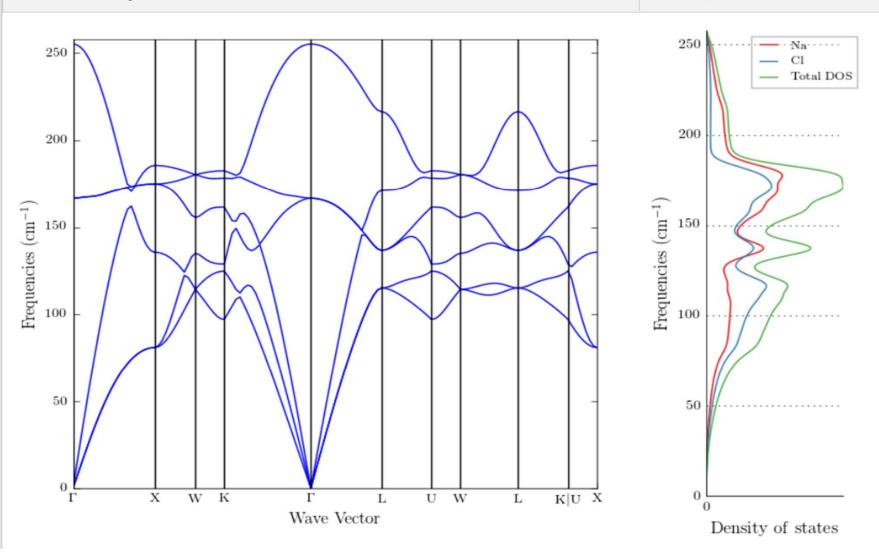
Density of States

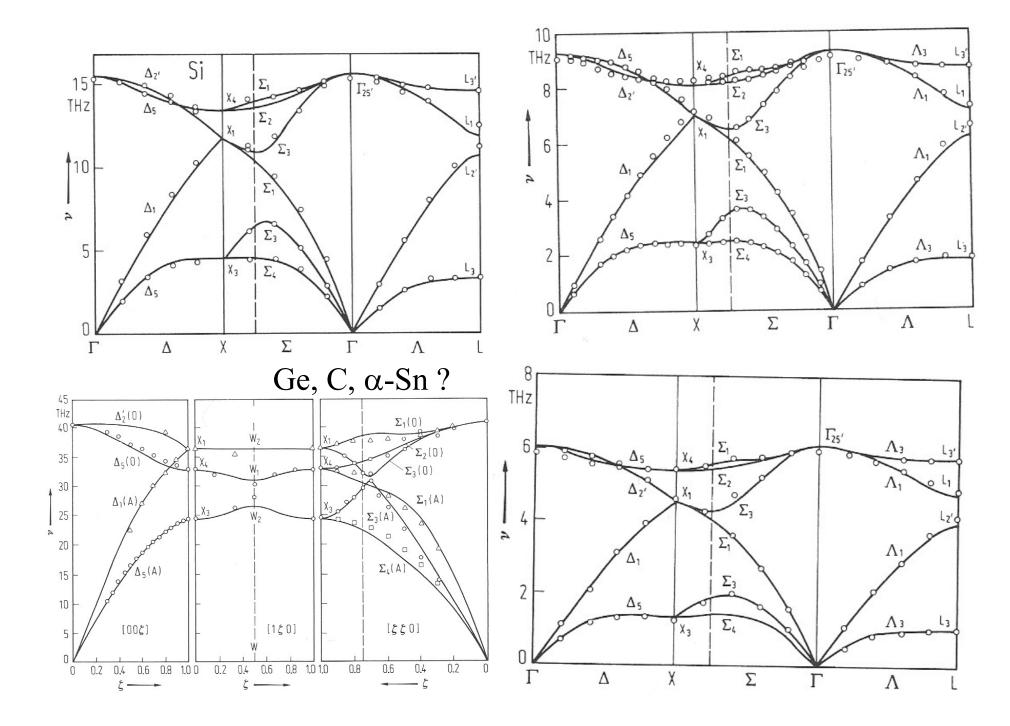
Vibrational Properties

Reference for phonon calculations and visualization:

Phonon dispersion

Visualize with phononwebsite

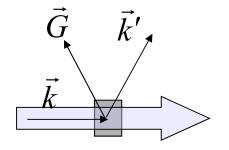




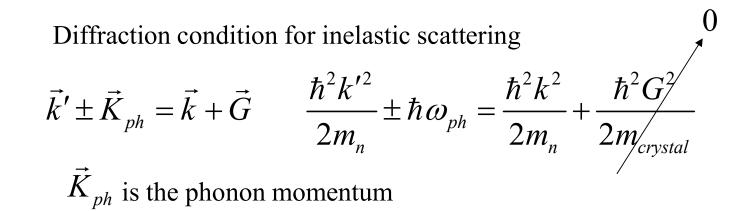
Inelastic neutron scattering

Diffraction condition for elastic scattering

$$\vec{k}' = \vec{k} + \vec{G}$$



The whole crystal recoils with momentum $\hbar \vec{G}$



Phonon dispersion relations are determined experimentally by inelastic neutron diffraction

long wavelength limit

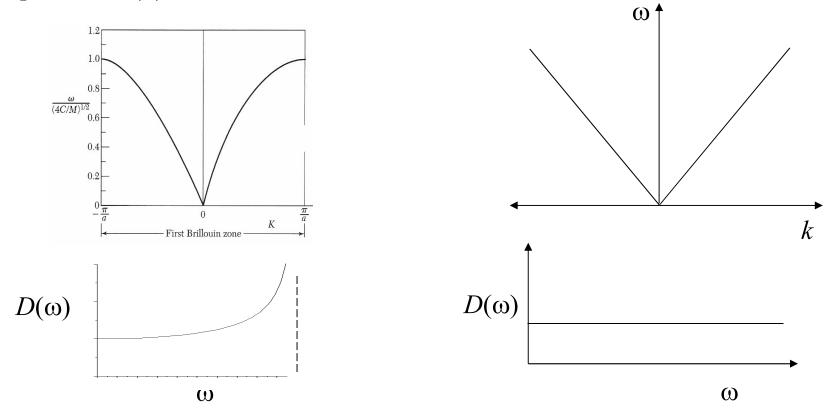
discrete version of wave equation

$$m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$$

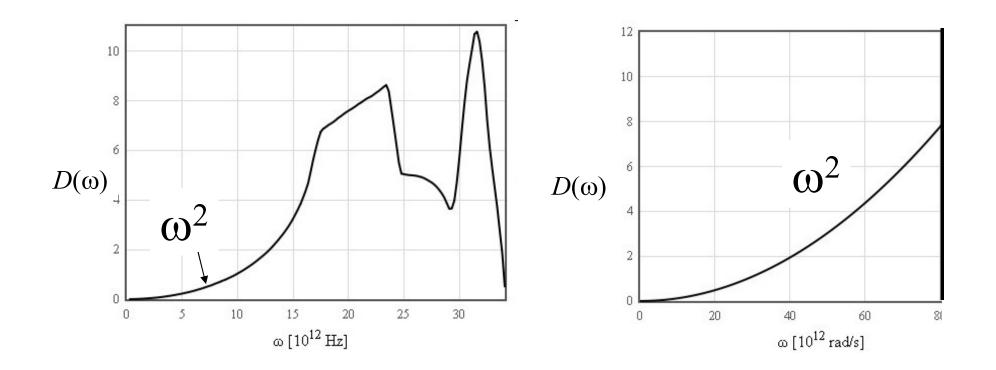
1-d wave equation

$$\frac{d^2u}{dt^2} = c^2 \frac{d^2u}{dx^2}$$

The solutions to the linear chain are the same as the solutions to the wave equation for $|k| << \pi/a$.



long wavelength limit



Phonons - long wavelength, low temperature limit

At low *T*, there are only long wavelength states occupied.

3 polarizations

Density of states: L

$$D(\omega)d\omega = \frac{3\omega^2}{2c^3\pi^2}d\omega.$$

$$I = \frac{2\pi^{5}k_{B}^{4}T^{4}}{15c^{2}h^{3}} = \sigma T^{4} \qquad [J m^{-2} s^{-2}]$$

$$u(\lambda) = \frac{8\pi hc}{\lambda^5 \left(\exp\left(\frac{hc}{\lambda k_B T}\right) - 1 \right)} \qquad [J/m^4]$$

$$u = \frac{4\sigma T^4}{c} \qquad [J/m^3]$$

$$c_{\nu} = \frac{16\sigma T^3}{c} \qquad [\mathrm{J} \mathrm{K}^{-1} \mathrm{m}^{-3}]$$

$$f = \frac{-4\sigma T^4}{3c} \qquad [J/m^3]$$

$$s = \frac{16\sigma T^3}{3c} \qquad [\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{m}^{-3}]$$

$$P = \frac{4\sigma T^4}{3c} \qquad [N/m^2]$$

Specific heat of insulators at low temperatures

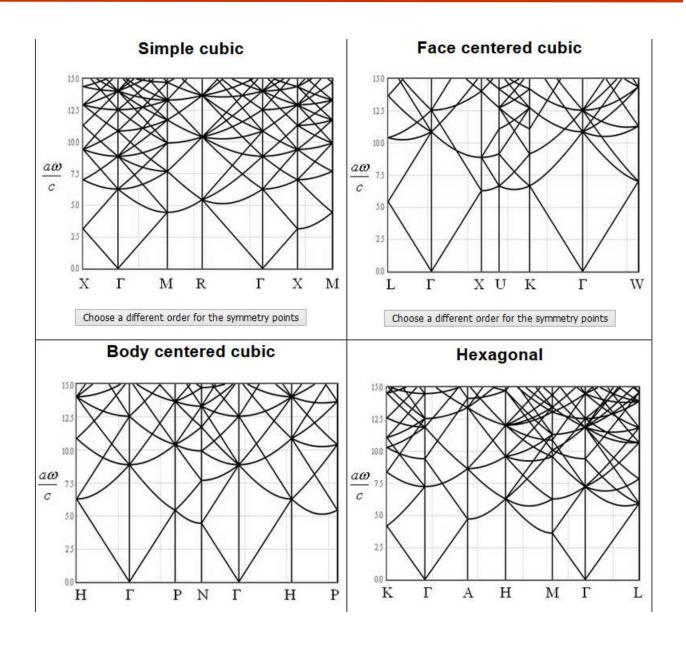
$$C_{v} = \frac{24\sigma VT^{3}}{c}$$

Speed of sound

Empty lattice approximation

Use the speed of sound instead of the speed of light.

3 acoustic branches 3*p* - 3 optical branches



Thermal properties

1. Determine the dispersion relation:

Write down the equations of motion (masses and springs).

The solutions to these equations will be eigen functions of **T**

$$\exp\left(i\left(\vec{k}\cdot\vec{a}_1+\vec{k}\cdot\vec{a}_2+\vec{k}\cdot\vec{a}_3-\omega t\right)\right)$$

Substitute the eigen functions of **T** into the equations of motion to determine the dispersion relation.

2. Determine the density of states numerically from the dispersion relation $D(\omega)$

For every allowed *k*, find all corresponding values of ω .

Specific Heat

$$u(T) = \int\limits_{0}^{\infty} rac{\hbar \omega D(\omega)}{\exp\left(rac{\hbar \omega}{k_BT}
ight) - 1} \, d\omega$$

$$c_v = \left(rac{\partial u}{\partial T}
ight)_{N,V}$$

$$c_v = \int \hbar \omega D(\omega) rac{\partial}{\partial T} \left(rac{1}{e^{rac{\hbar \omega}{k_B T}} - 1}
ight) d\omega$$

$$c_v = \int \left(rac{\hbar\omega}{T}
ight)^2 rac{D(\omega) e^{rac{\hbar\omega}{k_B T}}}{k_B igg(e^{rac{\hbar\omega}{k_B T}} - 1 igg)^2} d\omega$$

http://lampx.tugraz.at/~hadley/ss1/phonons/table/dos2cv.html

Heat capacity is the measure of the heat energy required to increase the temperature of an object by a certain temperature interval.

Specific heat is the measure of the heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval.

For solids, the heat capacity at constant volume and heat capacity at constant pressure are almost the same.

The heat capacity was historically important for understanding solids.

Dulong and Petit (Classical result)

Equipartition: $\frac{1}{2}k_BT$ per quadratic term in energy

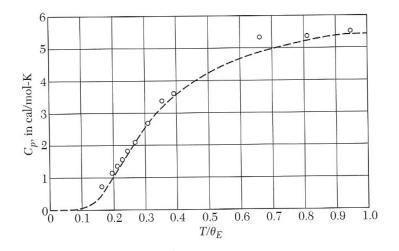
internal energy: $u = 3nk_BT$ n = atomic density

specific heat:

$$c_v = \frac{du}{dT} = 3nk_B$$

experiments: heat capacity goes to zero at zero temperature

Pierre Louis Dulong



Alexis Therese Petit