

Technische Universität Graz

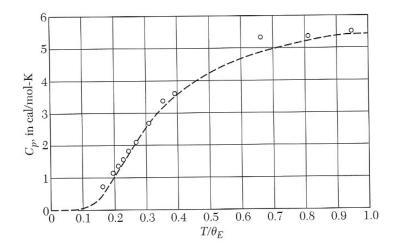
Institute of Solid State Physics

Phonon contribution to thermodynamic properties

Dulong and Petit (Classical result)

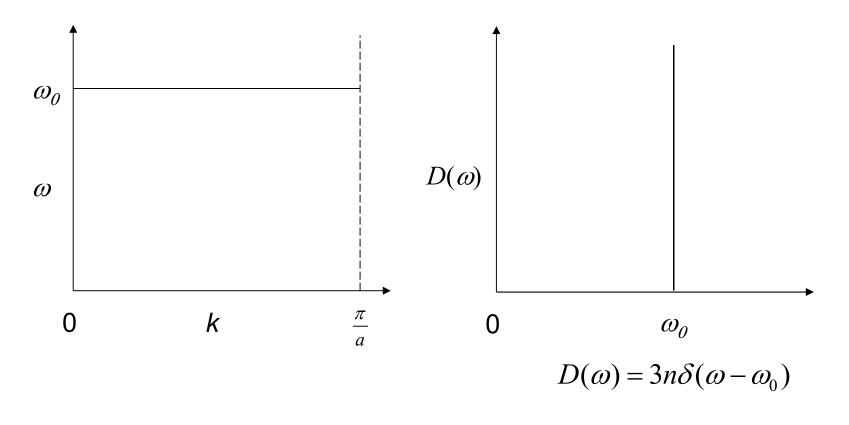
Equipartition: $\frac{1}{2}k_BT$ per quadratic term in energy

internal energy: $u = 3nk_BT$ n = atomic density


specific heat:

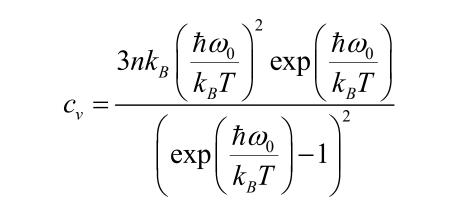
$$c_v = \frac{du}{dT} = 3nk_B$$

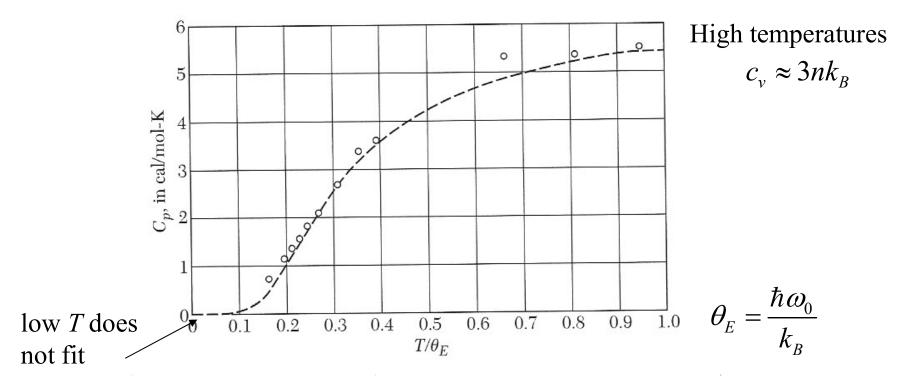
experiments: heat capacity goes to zero at zero temperature

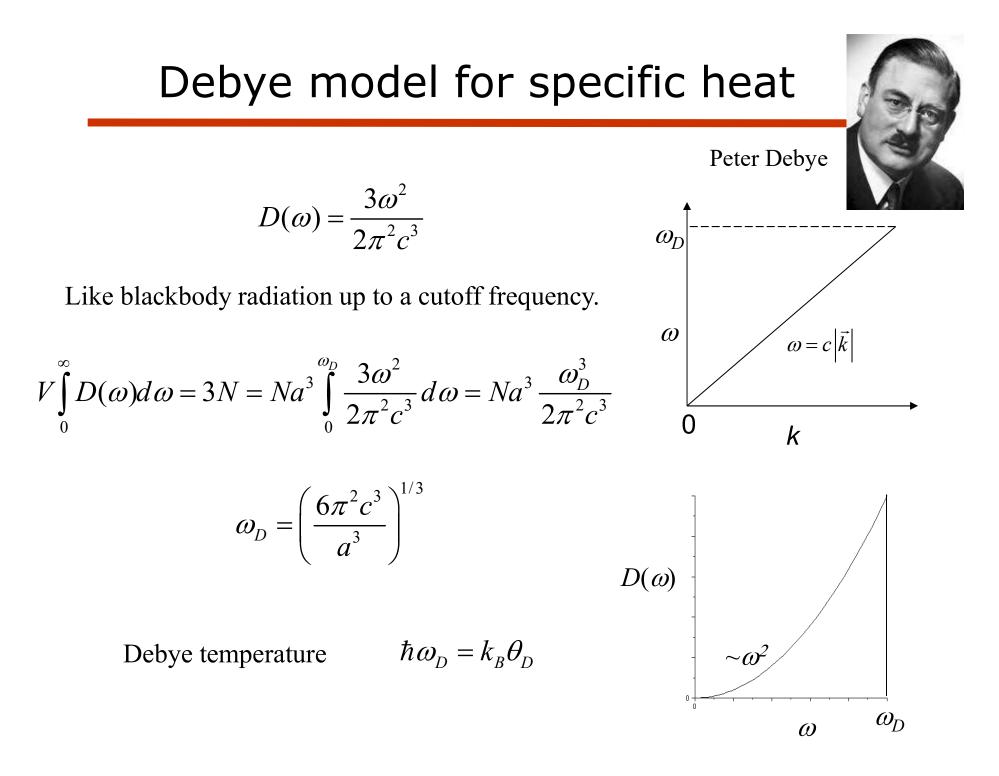

Pierre Louis Dulong

Alexis Therese Petit

Einstein model for specific heat


n = density of atoms


$$u(\omega) = D(\omega)\hbar\omega \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1} = \hbar\omega \frac{3n\delta(\omega - \omega_0)}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$

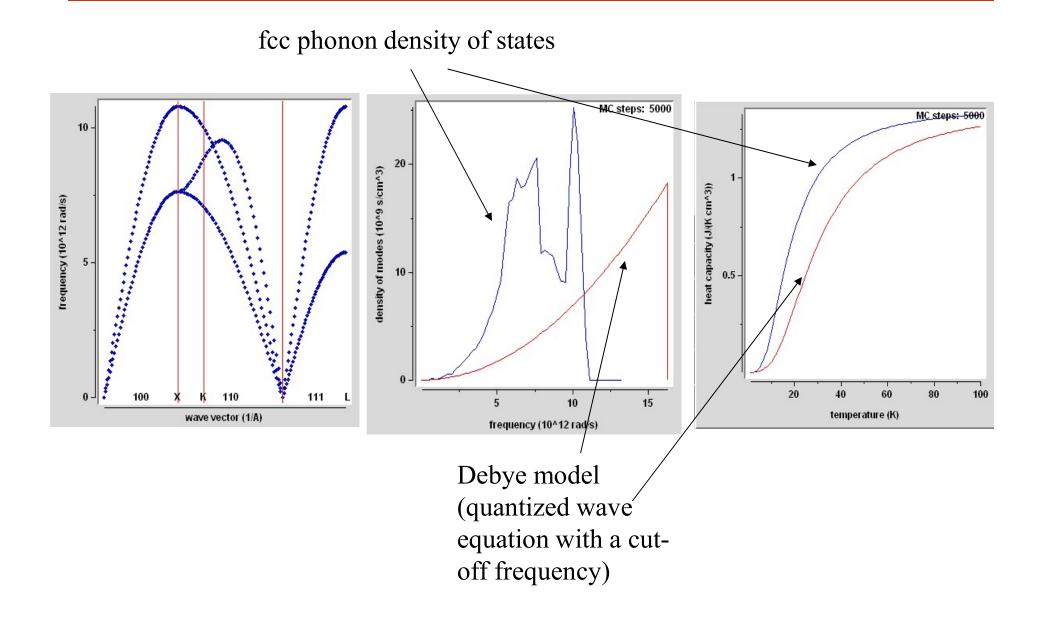

Einstein model for specific heat

$$c_{v} = \frac{du}{dT} = \frac{3n\hbar\omega_{0}\frac{\hbar\omega_{0}}{k_{B}T^{2}}\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)}{\left(\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)^{2}-1\right)^{2}} = \frac{3nk_{B}\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)^{2}\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)}{\left(\exp\left(\frac{\hbar\omega_{0}}{k_{B}T}\right)-1\right)^{2}}$$

Einstein model for specific heat

Debye model for heat capacity

$$u(\omega) = D(\omega)\hbar\omega \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1} = \frac{3\omega^2}{2\pi^2 c^3} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$


$$u = \int_{0}^{\omega_{D}} u(\omega) d\omega = \int_{0}^{\omega_{D}} \frac{3\omega^{2}}{2\pi^{2}c^{3}} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} d\omega \approx \int_{0}^{\infty} \frac{3\omega^{2}}{2\pi^{2}c^{3}} \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} d\omega$$

for low T
$$\int_{0}^{\infty} \frac{x^{3}}{\exp(x) - 1} dx = \frac{\pi^{4}}{15}$$

$$u \approx \frac{3\pi^4}{5} nk_B \frac{T^4}{\theta_D^3} \qquad c_v \approx \frac{12\pi^4}{5} nk_B \left(\frac{T}{\theta_D}\right)^3$$

Li	Be	NOR-DEAL	Iau	Me I	Debye	e ten	nperatu	ire a	nd the	rmal	condi	ictivi	ity		В	0	;	N	0		F	Ne
344 0.85	1440 2.00														0.	and the second s	230		ŀ		×	75
Na	Mg														AI	S	i	Р	s	Ī	CI	Ar
158 1.41	400 1.56						rature ctivity					К ⁻¹			42	· · · · · · · · · · · · · · · · · · ·	45 .48	12 2	•			92
к	Ca	Sc	Ti	v	С	r	Mn	Fe	С	0	Ni	С	u	Zn	Ga		ie	As	S	e	Br	Kr
91 1.02	230	360. 0.16	420 _. 0.22	380 0.3		30 .94	410 0.08	470 0.8		45 .00	450 0.91		13 .01	327 1.16	320 0.4		74 .60	282 0.50	90 0.) 02		72
Rb	Sr	Y	Zr	Nb	M	0	Тс	Ru	R	h	Pd	A	g	Cd	In	s	n w	Sb	Te	•	I	Xe
56 0.58	147	280 0.17	291 0.23	275 0.54	45 4 1.	0 38	0.51	600 1.1	· · · · · · · · · · · · · · · · · · ·	30 50	274 0.72	22	25 .29	209 0.97	108 0.8	AND DESCRIPTION OF A PROPERTY OF	00 .67	211 0.24	15 0.	53 02		64
Cs	Ва	Laβ	Hf	Та	w		Re	Os	lr		Pt	A	L	Hg	ті	Р	b	Bi	Po	,	At	Rn
38 0.36	110	142 0.14	252 0.23	240 0.5	40 3 1.	0 74	430 0.48	500 0.8		20 47	240 0.72	16 3.	5 17	71.9	78. 0.4		05 .35	119 0.08				
Fr	Ra	Ac		e	Pr		Pr		Sm	Eu		id	Ть		. 1	Но					Τ.	
					en son or an	Nd			511	Lu				_		no	Er		m	Yb	L	
				.11	0.12	0.1	6		0.13		consistent of the still print)	00 .11	0.1	21 11 0.	.0 .11	0.16	0.1	14	0.17	120 0.3	The state of the second s	10 .16
			Т	'n	Pa	U	N	D	Pu	Am		m	Bk	Cf	F	Es	Fn	n N	/ld	No	L	r
				63 .54	÷	207 0.2		06	0.07	· . :		·						· · ·				

Kittel

Phonon density of states

Thermal properties

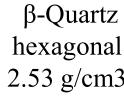
internal energy density
$$u = \int_{0}^{\infty} u(\omega) d\omega = \int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \left[J/m^3 \right]$$

heat
$$c_v = \frac{du}{dT} = \int \left(\frac{\hbar\omega}{T}\right)^2 \frac{D(\omega) \exp\left(\frac{\hbar\omega}{k_B T}\right)}{k_B \left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)^2} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

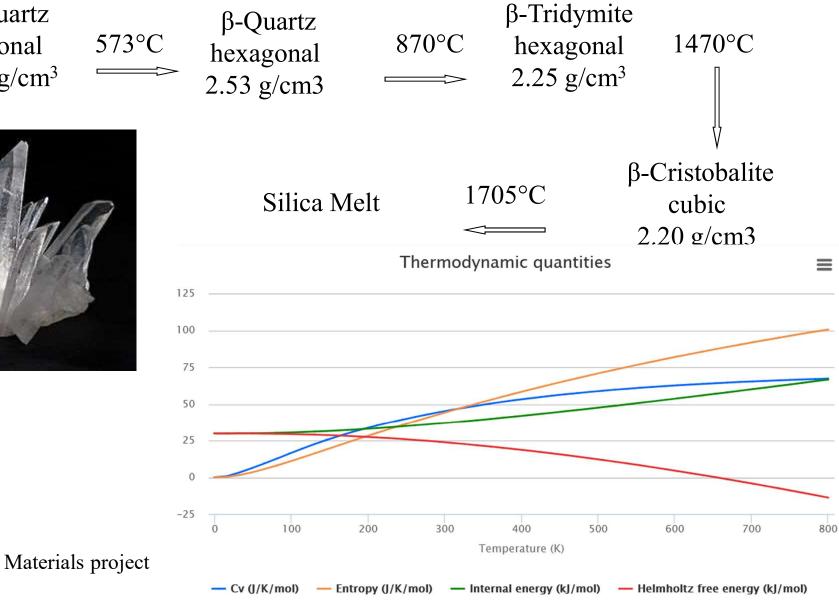
specific heat

entropy density
$$s(T) = \int \frac{C_v}{T} dT = \frac{1}{T} \int_0^\infty \frac{\hbar \omega D(\omega)}{\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1} d\omega \quad [J \text{ K}^{-1} \text{ m}^{-3}]$$

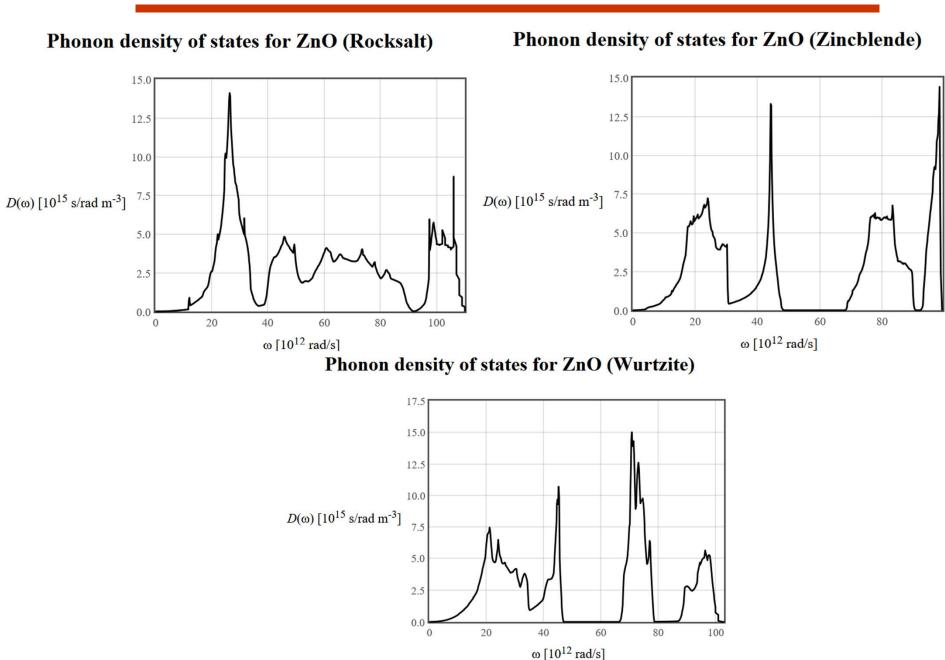
Helmholtz free energy density


$$f(T) = u - Ts = k_B T \int_{0}^{\infty} D(\omega) \ln\left(1 - \exp\left(\frac{-\hbar\omega}{k_B T}\right)\right) d\omega \quad \left[J/m^3\right]$$

Phonons


	Linear Chain $m\frac{d^2u_s}{dt^2} = C(u_{s+1} - 2u_s + u_{s-1})$	Linear chain 2 masses $M_1 \frac{d^2 u_s}{dt^2} = C(v_{s-1} - 2u_s + v_s)$ $M_2 \frac{d^2 v_s}{dt^2} = C(u_s - 2v_s + u_{s+1})$	$\begin{array}{c} \underbrace{\frac{d^2 u_{lmn}^x}{dt^2} = \frac{C}{\sqrt{3}\ m} \big[\big(u_{l+1m+1n+1}^x - u_{lmn}^x \big) + \big(u_{l-1m+1n+1}^x - u_{ln}^x \big) \\ + \big(u_{l+1m-1n+1}^x - u_{lmn}^x \big) + \big(u_{l+1m+1n-1}^x - u_{lmn}^x \big) + \big(u_{l-1m+1}^x + (u_{l+1m-1n-1}^x - u_{lmn}^x) + (u_{l+1m+1n+1}^x - u_{lmn}^y) - (u_{l-1m+1}^y + (u_{l+1m-1n+1}^y - u_{lmn}^y) - (u_{l+1m+1n-1}^y - u_{lmn}^y) + (u_{l-1m+1}^y + (u_{l+1m-1n-1}^y - u_{lmn}^y) + (u_{l+1m+1n+1}^y - u_{lmn}^z) - (u_{l-1m+1}^z + (u_{l+1m-1n+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) - (u_{l-1m+1}^z - u_{lmn}^z) - (u_{l+1m+1n-1}^z - u_{lmn}^z) + (u_{l-1m+1}^z - u_{lmn}^z) + (u_{l+1m+1n-1}^z - u_{lmn}^z - u_{lmn}^z) + (u_{l+1m+1n-1}^z - u_{lmn}^z - u_{lmn}^z) + (u_{l+1m+1n-1}^$
Eigenfunction solutions	$u_s = A_k e^{i(ksa - \alpha s)}$	$u_{s} = ue^{i(ksa-at)}$ $v_{s} = ve^{i(ksa-at)}$	$u_{lmn}^{x} = u_{\overrightarrow{k}}^{x} e^{i(l\overrightarrow{k}\cdot\overrightarrow{a_{1}}+m\overrightarrow{k}\cdot\overrightarrow{a_{2}}+n\overrightarrow{k}\cdot\overrightarrow{a_{3}})} = u_{\overrightarrow{k}}^{x} e^{i(\frac{(-l-1)}{k}-1)}$ And similar expressions for the y and z of
Dispersion relation	$\omega = \sqrt{\frac{4C}{m}} \left \sin\left(\frac{ka}{2}\right) \right $ $\frac{\omega}{\sqrt{4C/m}}$ $-\frac{\pi}{a}$ 0 k $\frac{\pi}{a}$	$\omega^{2} = C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm C \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} \left(\frac{ka}{2} \right)}{M_{1}M_{2}}}$ $\left[2C \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \right]^{1/2} \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{1/2} \left(\frac{2C/M_{2}}{M_{1}} \right)^{1/2} \left(\frac{2C/M_{2}}{M_{2}} \right)^{1/2} \left($	ω $\sqrt{C/m}$ $1,5$ $0,0$ Γ H P Γ L
Density of states <i>D(k</i>)	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{1}{\pi}$	$D(k) = \frac{3k^2}{2\pi^2}$

Quartz


 α -Quartz trigonal 2.65 g/cm³

ZnO

⁰¹¹⁰

Waves and particles

The eigen function solutions of the wave equation are plane waves. The scattering time is one over the rate for scattering from a given plane wave solution to any other.

Phonons are particles. The scattering time is the time before the phonons scatter and randomly change energy and momentum.

$$E = \hbar \omega$$
$$\vec{p} = \hbar \vec{k}$$

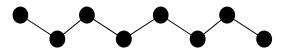
The average time between scattering events is $\tau_{sc} = 1/\Gamma$

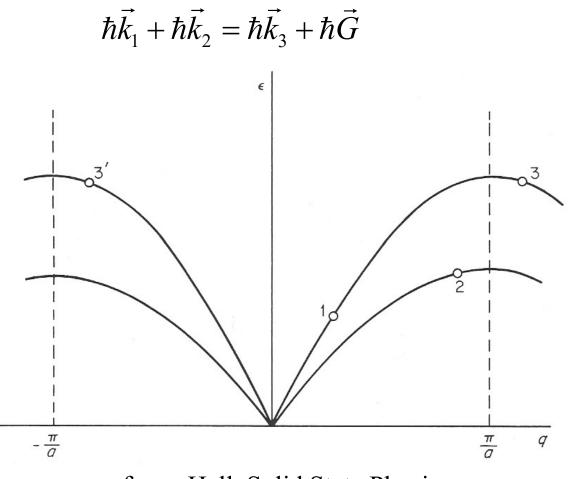
Phonon scattering

Scattering randomizes the momentum of the phonons.

$$H = H_{HO} + H_1$$

Transition rates determined by Fermi's golden rule

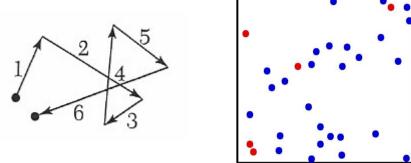

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle \psi_f \left| H_1 \right| \psi_i \right\rangle \right|^2 \delta \left(E_f - E_i \right)$$


Any process (3 phonon, 4 phonon, 5 phonon. ...) that conserves energy and momentum is allowed.

Results in attenuation of acoustic waves

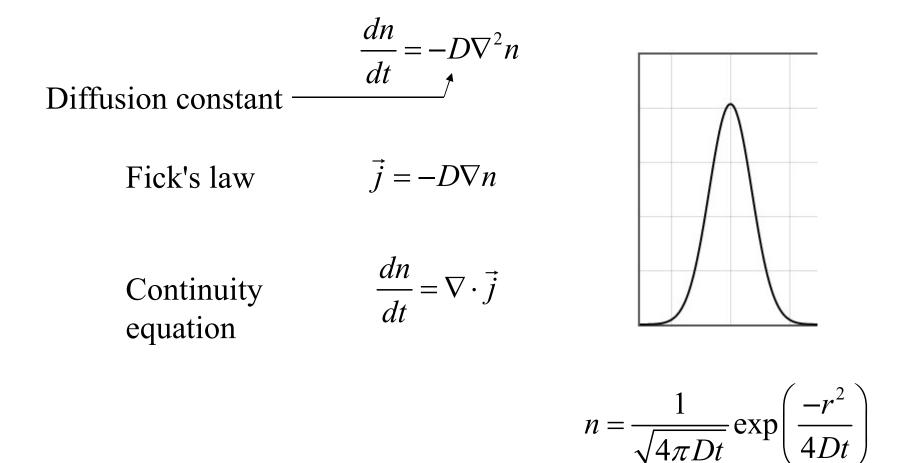
Umklapp Processes

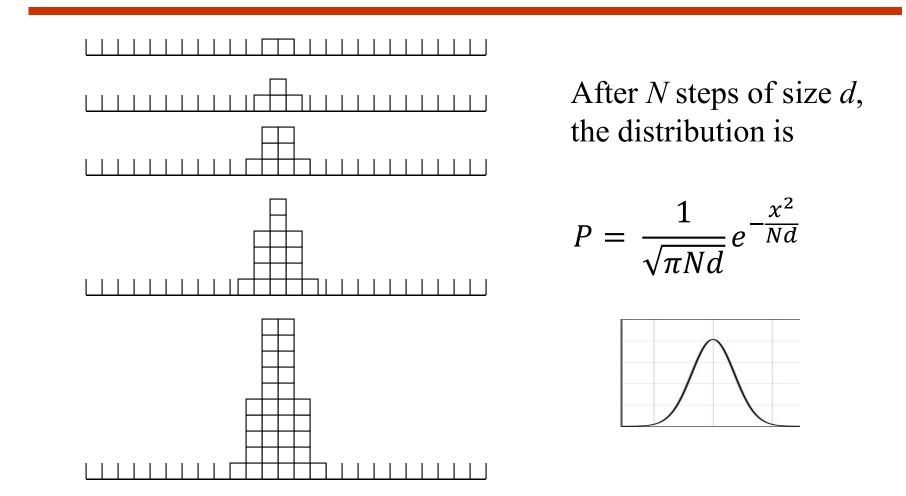
Three phonon scattering



from: Hall, Solid State Physics

Treat phonons as an ideal gas of particles that are confined to the volume of the solid.

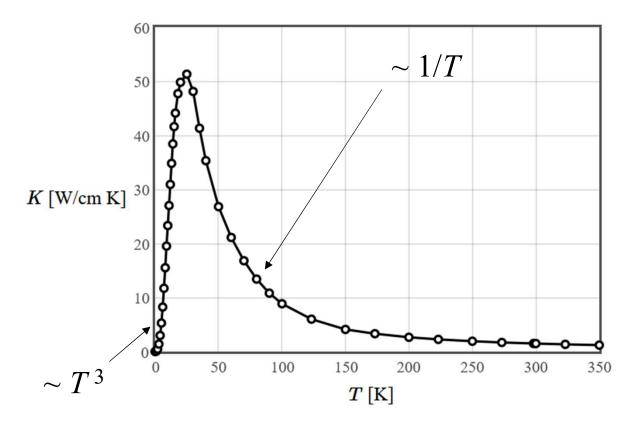

Phonons move at the speed of sound. They scatter due to imperfections in the lattice and anharmonic terms in the Hamiltonian.


The average time between scattering events is τ_{sc}

The average distance traveled between scattering events is the mean free path: $l = v\tau_{sc} \sim 10$ nm

Diffusion equation/ heat equation

Random walk


Central limit theorem: A function convolved with itself many times forms a Gaussian

Thermal conductivity

 $\vec{j}_U = \vec{E}\vec{j}$ $u = \overline{E}n$ $\vec{j} = -D\nabla n$ internal energy density Average particle energy $\vec{j}_{II} = -\vec{E}D\nabla n = -D\nabla u$ $\vec{j}_U = -D\frac{du}{dT}\nabla T = -Dc_v\nabla T$ $\vec{j}_U = -K\nabla T$ C_{v} Thermal conductivity — $K = Dc_v$ 300 0 100 200 400 500 T[K] $K \rightarrow 0$ as $T \rightarrow 0$

600

Thermal conductivity $\vec{j}_U = -K\nabla T$

The thermal conductivity of silicon.[1]

$$K = Dc_v$$

The diffusion constant decreases because of phonon-phonon scattering.

Thermal conductivity

$$\vec{j}_U = -K\nabla T$$

Material	Thermal conductivity W/(m	·K)
Glass	1.1	
Concrete, stone	1.7	
Ice	2	
Sandstone	2.4	
Sapphire	35 LOG K	
Stainless steel	12.11 ~ 45.0	
Lead	35.3	
Aluminum	237	
Aluminum alloys	s 120—180	
Gold	318	$\log T$ [K]
Copper	401	
Silver	429	
Diamond	900 - 2320	
Graphene	(4840±440) - (5300±	-480)

Calculate a dispersion relation for some other Bravais lattice.

Calculate one column of the phonon table: hcp, NaCl, CsCl, ZnS, diamond, ...

Calculate the temperatures at which ZnO goes through a phase transition.