Technische Universität Graz

Photon bandstructures

Light in a layered material

The dielectric constant and speed of light are different for the two layers.

Linear differential equations with periodic coefficients

The solutions to a linear differential equation with periodic coefficients,

$$
a \frac{d^{2} \xi}{d x^{2}}+b \frac{d \xi}{d x}+c(x)=d
$$

have the form,

$$
\xi=e^{i k x} u_{k}(x) \quad \text { where } \quad u_{k}(x)=u_{k}(x+a)
$$

Translational symmetry

The normal modes are eigenfunctions of the translation operator

The normal modes have Bloch form.
$\xi(x)=e^{i k x} u_{k}(x) \quad$ where $\quad u_{k}(x)=u_{k}(x+a)$

$$
T e^{i k x} u_{k}(x)=e^{i k(x+a)} u_{k}(x+a)=e^{i k a} e^{i k x} u_{k}(x)
$$

Light in a layered material

Hill's equation $\frac{d^{2} \xi(x)}{d x^{2}}=-\frac{\omega^{2}}{c^{2}(x)} \xi(x)$

In region I , the solutions are $\sin \left(\omega x / c_{1}\right)$ and $\cos \left(\omega x / c_{1}\right)$.
In region II, the solutions are $\sin \left(\omega x / c_{2}\right)$ and $\cos \left(\omega x / c_{2}\right)$.
Match the solutions at the boundaries.

Normal modes don't have a clearly defined wavelength.

Solutions in region I and region II

Two linearly independent solutions are specified by the boundary conditions

$$
\xi_{1}(0)=1, \quad \xi_{1}^{\prime}(0)=0, \quad \xi_{2}(0)=0, \quad \xi_{2}^{\prime}(0)=1
$$

In region I,

$$
\xi_{1}(x)=\cos \left(\frac{\omega x}{c_{1}}\right), \quad \xi_{2}(x)=\frac{c_{1}}{\omega} \sin \left(\frac{\omega x}{c_{1}}\right)
$$

In region II,

$$
\begin{aligned}
& \xi_{1}(x)=\cos \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(x-b)\right)-\frac{c_{2}}{c_{1}} \sin \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(x-b)\right) \\
& \xi_{2}(x)=\frac{c_{1}}{\omega} \sin \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(x-b)\right)+\frac{c_{2}}{\omega} \cos \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(x-b)\right)
\end{aligned}
$$

Translation operator

$$
\left[\begin{array}{l}
\xi_{1}(a) \\
\xi_{2}(a)
\end{array}\right]=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]\left[\begin{array}{l}
\xi_{1}(0) \\
\xi_{2}(0)
\end{array}\right]
$$

The elements of the translation matrix can be determined by evaluating this equation and its derivative at $x=0$. Diagonalize the translation operator and find its eigenvalues to determine the character of the solutions.

Wave vector

$$
\begin{gathered}
k=\frac{1}{a} \tan ^{-1}\left(\sqrt{\frac{4}{\alpha(\omega)^{2}}-1}\right) \\
\alpha(\omega)=2 \cos \left(\frac{\omega b}{c_{1}}\right) \cos \left(\frac{\omega}{c_{2}}(a-b)\right)-\frac{c_{1}^{2}+c_{2}^{2}}{c_{1} c_{2}} \sin \left(\frac{\omega b}{c_{1}}\right) \sin \left(\frac{\omega}{c_{2}}(a-b)\right)
\end{gathered}
$$

$a:$	600E-9	$[\mathrm{m}]$
$b:$	250E-9	$[\mathrm{m}]$
$c_{1}:$	2.998 E 8	$[\mathrm{~m} / \mathrm{s}]$
$c_{2}:$	1 EE 8	$[\mathrm{~m} / \mathrm{s}]$
$\omega_{\max }:$	5 E 15 $[\mathrm{rad} / \mathrm{s}]$	

Band gap: exponentially decaying solutions

The one solution grows exponentially and the other decays like $\exp (-x / \delta)$.

Gray where $|\alpha|>2$.

$\delta=\frac{-a}{\ln \left(\min \left(\lambda_{-}, \lambda_{+}\right)\right)}$

Bloch waves

$$
\xi=e^{i k x} u_{k}(x)
$$

For periodic boundary conditions $L=N a$, the allowed values of k are exactly those allowed for waves in vacuum.
k labels the eigenfunctions of the translation operator.

$$
T e^{i k x} u_{k}(x)=e^{i k(x+a)} u_{k}(x+a)=e^{i k a} e^{i k x} u_{k}(x)
$$

Dispersion relation

Diffraction condition

Dispersion relation

$$
k=\frac{1}{a} \tan ^{-1}\left(\sqrt{\frac{4}{\alpha(\omega)^{2}}-1}\right)
$$

$$
\begin{gathered}
\tan (k a)=\sqrt{\frac{4}{\alpha^{2}}-1} \\
e^{i k x} u_{k}(x)=e^{i k x} \sum_{G} a_{G} e^{i G x} \\
k=k^{\prime}+G^{\prime} \\
e^{i k x} u_{k}(x)=e^{i\left(k^{\prime}+G^{\prime}\right) x} \sum_{G} a_{G} e^{i G x}
\end{gathered}
$$

There is only one k^{\prime} in the first Brillouin zone and the convention is to use that one.

$$
e^{i k x} u_{k}(x)=e^{i k^{\prime} x} \sum_{G} a_{G} e^{i\left(G+G^{\prime}\right) x}
$$

Zone schemes

Density of states

The density of states can be determined from the dispersion relation.

Energy spectral density

Analog to the Planck radiation curve.

Thermodynamic quantities

Energy spectral density:

$$
u(\omega)=\frac{\hbar \omega D(\omega)}{\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1}
$$

Internal energy density:

$$
u(T)=\int_{0}^{\infty} \frac{\hbar \omega D(\omega)}{\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1} d \omega
$$

Helmholz free energy density:

$$
f(T)=k_{B} T \int_{0}^{\infty} D(\omega) \ln \left(1-\exp \left(\frac{-\hbar \omega}{k_{B} T}\right)\right) d \omega
$$

Entropy density: $s=-\frac{\partial f}{\partial T}=-k_{B} \int_{0}^{\infty} D(\omega)\left(\ln \left(1-e^{-\frac{\hbar}{\hbar} \omega / k_{B} T}\right)+\frac{\hbar \omega}{k_{B} T\left(1-e^{\hbar \omega / k_{B} T}\right)}\right) d \omega$

Specific heat:

$$
c_{\nu}=\int\left(\frac{\hbar \omega}{T}\right)^{2} \frac{D(\omega) \exp \left(\frac{\hbar \omega}{k_{B} T}\right)}{k_{B}\left(\exp \left(\frac{\hbar \omega}{k_{B} T}\right)-1\right)^{2}} d \omega
$$

3d photonic crystal: complete gap , $\varepsilon=12: 1$

[S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]
http://ab-initio.mit.edu/photons/tutorial/L1-bloch.pdf

Home

Outline
Introduction
Molecules
Crystal Structure
Crystal
Crystal Binding
Crystal Bindin
Photons
Phonons
Electrons
Energy bands
Crystal Physics
Semiconductors
Magnetism
Exam questions
Appendices
Lectures
TUG students
Student project
Skriptum
Books
Making
presentations
< hide <

The first Brillouin zone of a face centered cubic lattice

$$
\vec{k}=u \vec{b}_{1}+w \vec{b}_{2}+w \vec{b}_{3}:(u, v, w)
$$

Symmetry points (u, v, w)	$\left[k_{k}, k_{y}, k_{z}\right]$	Point group
$\Gamma:(0,0,0)$	$[0,0,0]$	m 3 m
$\mathrm{X}:(0,1 / 2,1 / 2)$	$[0,2 \pi / a, 0]$	$4 / \mathrm{mmm}$
$\mathrm{I}:(1 / 2,1 / 2,1 / 2)$	$[\pi / a, \pi / a, \pi / a]$	$\overline{3} \mathrm{~m}$
$\mathrm{~W}:(1 / 4,3 / 4,1 / 2)$	$[\pi / a, 2 \pi / a, 0]$	$\overline{4} 2 \mathrm{~m}$
$\mathrm{U}:(1 / 4,5 / 8,5 / 8)$	$[\pi / 2 a, 2 \pi / a, \pi / 2 a]$	mm 2
$\mathrm{~K}:(3 / 8,3 / 4,3 / 8)$	$[3 \pi / 2 a, 3 \pi / 2 a, 0]$	mm 2

$$
\begin{aligned}
& \overline{\Gamma \mathrm{L}}=\frac{\sqrt{3} \pi}{a}, \overline{\Gamma \mathrm{X}}=\frac{2 \pi}{a}, \overline{\Gamma \mathrm{~W}}=\frac{\sqrt{5} \pi}{a} \\
& \overline{\Gamma \mathrm{~K}}=\overline{\Gamma \mathrm{U}}=\frac{3 \pi}{\sqrt{2} a}, \overline{K \mathrm{~W}}=\overline{X U}=\frac{\pi}{\sqrt{2} a}
\end{aligned}
$$

Symmetry lines	Point group
$\Delta:(0, v, v) 0<v<1 / 2$	4 mm
$\Lambda:(w, w, w) 0<w<1 / 2$	3 m
$\sum:(u, 2 u, u) 0<u<3 / 8$	mm 2
$\mathrm{~S}:(2 u, 1 / 2+2 u, 1 / 2+u) 0<u<1 / 8$	mm 2
$\mathrm{Z}:(u, 1 / 2+u, 1 / 2) 0<u<1 / 4$	mm 2
$\mathrm{Q}:(1 / 2-u, 1 / 2+u, 1 / 2) 0<u<1 / 4$	2

The real space and reciprocal space primitive translation vectors are

$$
\begin{array}{lll}
\vec{a}_{1}=\frac{a}{2}(\hat{x}+\hat{z}), & \vec{a}_{2}=\frac{a}{2}(\hat{x}+\hat{y}), & \vec{a}_{3}=\frac{a}{2}(\hat{y}+\hat{z}), \\
\vec{b}_{1}=\frac{2 \pi}{a}\left(\hat{k}_{x}-\hat{k}_{y}+\hat{k}_{z}\right), & \vec{b}_{2}=\frac{2 \pi}{a}\left(\hat{k}_{x}+\hat{k}_{y}-\hat{k}_{z}\right), & \vec{b}_{3}=\frac{2 \pi}{a}\left(-\hat{k}_{x}+\hat{k}_{y}+\hat{k}_{z}\right)
\end{array}
$$

Cut-out patterns for Brillouin zones

Cut-out patterns to make your own models of the Brillouin zones. The symmetry points are red and the symmetry lines are blue

- simple cubic
- face centered cubic
- body centered cubic
- hexagonal
- tetragonal
- body centered tetragonal
- orthorhombic
- face centered orthorhombic
- body centered orthorhombic
- base centered orthorhombic

Inverse opal photonic crystal

FIgure 8: The photonic band structure for the lowest bands of an "inverse opal" structure: a
 face-centered cubic (fcc) lattice of close-packed air spheres in dielectric ($\varepsilon=13$). (Inset shows fabricated structure from figure 9.) There is a complete photonic band gap (yellow) between the eighth and ninth bands. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book

Photon density of states

Diffraction causes gaps in the density of modes for k vectors near the planes in reciprocal space where diffraction occurs.

photon density of states for voids in an fcc lattice
http://www.public.iastate.edu/~cmpexp/groups/PBG/pres_mit_short/sld002.htm

The alga Calyptrolithophora papillifera is encased in a shell of calcite crystals with a two-layer structure (visible on oblique face). Calculations show that this protective covering reflects ultraviolet light. Image Credit: J. Young/Natural History Museum, London
http://www.physicscentral.com/explore/pictures/algae.cfm

http://lampx.tugraz.at/~hadley/ss1/emfield/photonic_crystals/photonic_table.html

Spheres on any 3-D Bravais lattice

$$
c(\vec{r})^{2} \nabla^{2} A_{j}=\frac{d^{2} A_{j}}{d t^{2}}
$$

opal

$$
c(\vec{r})^{2}=\sum_{\vec{G}} b_{\vec{G}} e^{i \vec{G} \cdot \vec{r}}=c_{1}^{2}+\frac{4 \pi\left(c_{2}^{2}-c_{1}^{2}\right)}{V} \sum_{\vec{G}} \frac{\sin (|G| R)-|G| R \cos (|G| R)}{|G|^{3}} \exp (i \vec{G} \cdot \vec{r})
$$

Plane wave method

$$
\begin{gathered}
c(\vec{r})^{2} \nabla^{2} A_{j}=\frac{d^{2} A_{j}}{d t^{2}} \\
c(\vec{r})^{2}=\sum_{\vec{G}} b_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \quad A_{j}=\sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
\sum_{\vec{G}} b_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \sum_{\vec{\kappa}}\left(-\kappa^{2}\right) A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)}=-\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
\sum_{\vec{k}} \sum_{\vec{G}}\left(-\kappa^{2}\right) b_{\vec{G}} A_{\vec{k}} e^{i(\vec{G} \cdot \vec{r}+\vec{k} \cdot \vec{r}-\omega t)}=-\omega^{2} \sum_{\vec{k}} A_{\vec{k}} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
\text { collect like terms: } \vec{G}+\vec{\kappa}=\vec{k} \quad \Rightarrow \vec{\kappa}=\vec{k}-\vec{G} \\
\text { Central equations: } \quad \sum_{\vec{G}}(\vec{k}-\vec{G})^{2} b_{\vec{G}} A_{\vec{k}-\vec{G}}=\omega^{2} A_{\vec{k}}
\end{gathered}
$$

Plane wave method

$$
\text { Central equations: } \quad \sum_{\vec{G}}(\vec{k}-\vec{G})^{2} b_{\vec{G}} A_{\vec{k}-\vec{G}}=\omega^{2} A_{\vec{k}}
$$

Choose a k value inside the 1 st Brillouin zone. The coefficient A_{k} is coupled by the central equations to coefficients A_{k} outside the 1 st Brillouin zone. Write these coupled equations in matrix form.

$$
\left[\begin{array}{ccccc}
\left(\vec{k}+\vec{G}_{2}\right)^{2} b_{0}-\omega^{2} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} & k^{2} b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{3}\right)^{2} b_{\vec{G}_{3}} & \left(\vec{k}+\vec{G}_{2}-\vec{G}_{4}\right)^{2} b_{\vec{G}_{4}} \\
\left(\vec{k}+2 \vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}\right)^{2} b_{0}-\omega^{2} & k^{2} b_{\vec{G}_{1}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{2}\right)^{2} b_{\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}-\vec{G}_{3}\right)^{2} b_{\vec{G}_{3}} \\
\left(\vec{k}+\vec{G}_{2}\right)^{2} b_{-\vec{G}_{2}} & \left(\vec{k}+\vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & k^{2} b_{0}-\omega^{2} & \left(\vec{k}-\vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2} b_{\vec{G}_{2}} \\
\left(\vec{k}-\vec{G}_{1}+\vec{G}_{3}\right)^{2} b_{-\vec{G}_{3}} & \left(\vec{k}-\vec{G}_{1}+\vec{G}_{2}\right)^{2} b_{-\vec{G}_{2}} & k^{2} b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{1}\right)^{2} b_{0}-\omega^{2} & \left(\vec{k}-2 \vec{G}_{1}\right)^{2} b_{\vec{G}_{1}} \\
\left(\vec{k}-\vec{G}_{2}+\vec{G}_{4}\right)^{2} b_{-\vec{G}_{4}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{3}\right)^{2} b_{-\vec{G}_{3}} & k^{2} b_{-\vec{G}_{2}} & \left(\vec{k}-\vec{G}_{2}+\vec{G}_{1}\right)^{2} b_{-\vec{G}_{1}} & \left(\vec{k}-\vec{G}_{2}\right)^{2} b_{0}-\omega^{2}
\end{array}\right]\left[\begin{array}{c}
A_{k+G_{2}} \\
A_{k+G_{1}} \\
A_{k} \\
A_{k-G_{1}} \\
A_{k-G_{2}}
\end{array}\right]=0
$$

There is a matrix like this for every k value in the 1 st Brillouin zone.

2-D array of air holes

Solved by a student with the plane wave method

Inverse diamond

Solved by a student with the plane wave method

Empty lattice approximation

Empty lattice approximation

Empty lattice approximation

http://ab-initio.mit.edu/book/

Photonic Crystals

Molding the Flow of Light second Eomion

John D. Joannopoulos
Steven G. Johnson
Joshua N. Winn
Robert D. Meade

Empty lattice approximation

http://ab-initio.mit.edu/book/

fcc

Figure 2: The photonic band structure for the lowest-frequency electromagnetic modes of a face-centered cubic (fcc) lattice of close-packed dielectric spheres ($\varepsilon=13$) in air (inset). Note the absence of a complete photonic band gap. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book/

diamond

Figure 3: The photonic band structure for the lowest bands of a diamond lattice of air spheres in a high dielectric ($\varepsilon=13$) material (inset). A complete photonic band gap is shown in yellow. The wave vector varies across the irreducible Brillouin zone between the labelled high-symmetry points; see appendix B for a discussion of the Brillouin zone of an fcc lattice.
http://ab-initio.mit.edu/book/

Woodpile photonic crystal

FIgure 7: The photonic band structure for the lowest bands of the woodpile structure (inset, from figure 6) with $\varepsilon=13$ logs in air. The irreducible Brillouin zone is larger than that of the fcc lattice described in appendix B, because of reduced symmetry-only a portion is shown, including the edges of the complete photonic band gap (yellow).
http://ab-initio.mit.edu/book

Yablonovite

Figure 5: The photonic band structure for the lowest bands of Yablonovite (inset, from figure 4). Wave vectors are shown for a portion of the irreducible Brillouin zone that includes the edges of the complete gap (yellow). A detailed discussion of this band structure can be found in Yablonovitch et al. (1991a).
http://ab-initio.mit.edu/book/
(
http://lampx.tugraz.at/~hadley/ss1/emfield/photonic_crystals/photonic_table.html

