
Chapter 1: Review of atomic physics

Hydrogen

The simplest atom is hydrogen; it consists of one proton and one electron. The Hamiltonian
for a hydrogen atom is,

HH
total = − h̄2

2m
∇2 − e2

4πε0r
. (1)

Here m is the mass of an electron, e is the elementary charge, ε0 is the permittivity constant,
and h̄ is the reduced Plank’s constant. Hydrogen is the only atom for which the eigenstates
can be found analytically. The first few eigenstates are,
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Here a0 is the Bohr radius. The energies of the eigenstates can be determined by calculating
the expectation value,

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

= − me4

32π2ε20h̄
2n2

= −13.6

n2
eV , (3)

where n is the principle quantum number.

Helium

Helium has two electrons and a positively charged nucleus with a charge of 2e. The
Hamiltonian for helium is,

HHe
total = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
2e2

4πε0r1

− 2e2

4πε0r2

+
e2

4πε0|~r1 − ~r2|
. (4)

The first term is the kinetic energy of electron 1, the second term is the kinetic energy of
electron 2, the third term is the attractive Coulomb interaction between electron 1 and the
nucleus, the fourth term is the attractive Coulomb interaction between electron 2 and the
nucleus, and the last term is the repulsive electron-electron interaction. The eigenstates
of this Hamiltonian are two-electron wavefunctions that depend on the positions of both
electrons Ψ(~r1, ~r2). It is not possible to find a simple analytic expression for this two-
electron wavefunction.
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To simplify this problem, the electron-electron interactions are neglected resulting in the
reduced Hamiltonian for helium,

HHe
red = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
2e2

4πε0r1

− 2e2

4πε0r2

. (5)

The Schrdinger equation for this reduced Hamiltonian is,

− h̄2

2m
∇2

1Ψ− h̄2

2m
∇2

2Ψ− 2e2

4πε0r1

Ψ− 2e2

4πε0r2

Ψ = EΨ. (6)

This can be solved by the separation of variables. Assume that Ψ can be written as a
product of two functions,Ψ(~r1, ~r2) = φm(~r1)φn(~r2). Substitute this form into the Schrdinger
equation and divide by Ψ. The resulting terms can be rearranged so that all terms that
depend on ~r1 can be put on the left side of the = sign and all terms that depend on ~r2 can
be put on the right side of the = sign. Since a function of ~r1 cannot be equal to a function
of ~r2 for all ~r1 and ~r2, both sides of the equation must be equal to a constant. Let’s call
the constant E ′. The separated equations are,
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∇2
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(7)

Both of these equations are nearly the same as the Schrdinger equation for hydrogen. A
difference is that the Coulomb term is a factor of 2 greater than for hydrogen because of the
+2e charge of the helium nucleus. Nevertheless, slightly modified hydrogen wavefunctions
called the atomic orbitals solve these equations.

Atomic orbitals

The first few atomic orbitals are,
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(8)

where the superscript Z is the charge of the nucleus. For helium, Z = 2. These solutions
are used extensively to describe the quantum states of atoms, molecules, and solids. The
energies of the atomic orbitals are,

E = − Z2me4

32π2ε20h̄
2n2

= −13.6Z2

n2
eV . (9)
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Many-electron wavefunctions

At this point it is necessary to discuss the properties of many-electron wavefunctions. This
is because many-electron wavefunctions must satisfy an additional condition beyond being
solutions to the Schrdinger equation: they must also be antisymmetric. A many-electron
wavefunction must change sign when any two electrons are exchanged.

Ψ(~r1, · · · , ~rj, · · · , ~rk, · · · , ~rN) = −Ψ(~r1, · · · , ~rk, · · · , ~rj, · · · , ~rN). (10)

Many-electron wavefuntions are often written as products of atomic orbitals where it is
necessary to include the spin in these products. The complete wavefunction of an electron
is a product of a spatial part and a spin part. This is called a spin orbital. There are two
spin orbitals for each of the atomic orbitals. The first few spin orbitals are,

φ1s ↑, φ1s ↓, φ2s ↑, φ2s ↓, · · · (11)

Here the up and down arrows denote the spin of the spin orbitals. A many-electron
wavefunction can be written as an antisymmetrized product of spin orbitals.

Ψ(~r1, ~r2, · · · , ~rN) = Aφ1s ↑ φ1s ↓ · · ·φN ↑ . (12)

Here A is the antisymmetrizing operator.

Slater determinants

One way to ensure the antisymmetry of the wavefunction is to construct a Slater determi-
nant.

Ψ(~r1, ~r2, · · · , ~rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1s ↑ (~r1) φ1s ↓ (~r1) · · · φN ↑ (~r1)
φ1s ↑ (~r2) φ1s ↓ (~r2) · · · φN ↑ (~r2)

...
...

...
φ1s ↑ (~rN) φ1s ↓ (~rN) · · · φN ↑ (~rN)

∣∣∣∣∣∣∣∣∣ . (13)

The rows in a Slater determinant are labeled by the electrons and the columns are labeled
by the spin orbitals. If any two rows of a matrix are exchanged, the determinant changes
sign. Therefore a Slater determiant always satisfies the antisymmetry condition.
If any two columns of the matrix are identical, the determinant is zero. This is an expression
of the Pauli exclusion principle. No two electrons can occupy the same spin orbital. For
notational convenience, a Slater determinant is often expressed in Dirac notation,

Ψ(~r1, ~r2, · · · , ~rN) = |φ1s ↑, φ1s ↓, · · · , φN ↑〉. (14)

The first spin orbital becomes the first column of the Slater determinant. The second spin
orbital becomes the second column of the Slater determinant, and so forth. The order
of the spin orbitals is important since exchanging the columns of the Slater determinant
changes the sign of the wave function.
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Returning to helium, the ground state of helium has two electrons in 1s orbitals. The
two-electron ground state wavefunction is,

ΨHe
0 (~r1, ~r1) =

1√
2

∣∣∣∣φHe
1s ↑ (~r1) φHe

1s ↓ (~r1)
φHe

1s ↑ (~r2) φHe
1s ↓ (~r2)

∣∣∣∣ =
1√
2
φHe

1s (~r1)φHe
1s (~r2)(↑↓ − ↓↑). (15)

This is an exact solution to HHe
red with an energy that can be determined from Eq. (9)

to be -108.8 eV. A much better estimation for the energy can be obtained by numerically
evaluating the energy using HHe

total which includes the electron-electron interactions.

EHe
0 ≈

〈ΨHe
0 |HHe

total|ΨHe
0 〉

〈ΨHe
0 |ΨHe

0 〉
. (16)

This evaluates to -77.49 eV which is close to the actual ground state energy of -78.99 eV.

The first excited state of helium has one electron in a 1s orbital and one electron in a
2s orbital. There are four possible spin configurations for this state: ↑↑, ↓↓, ↓↑, and ↑↓.
When the energy of these four states are evaluated using the reduced Hamiltonian (5), the
energies of all four states are the same. Using Eq. (9), the energy of the first excited state
is -68 eV.

However, when the energy of the four states is evaluated using the total Hamiltonian
(4) which includes the electron-electron interactions, three of the states have the same
energy but the fourth one has a different energy. The three states with the same energy
are called the triplet state. The fourth state with a different energy is called a singlet.

Singlet and triplet states

The first excited state of helium has one electron in a 1s orbital and one electron in a 2s
orbital. There are four possible spin configurations for this state: ↑↑, ↓↓, ↓↑, and ↑↓. The
corresponding wavefunctions are,

Ψ↑↑ = 1√
2
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Ψ↓↑ = 1√
2

∣∣∣∣φHe
1s ↓ (~r1) φHe
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2s (~r1) ↑ φHe
1s (~r2) ↓).

(17)
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The first two wavefunctions, Ψ↑↑ and Ψ↓↓, have an antisymmetric orbital component and
a symmetric spin component. It is not possible to directly separate the last two wave-
functions, Ψ↑↓ and Ψ↓↑, into a product of an orbital component and a spin component but
they can be transformed to a wavefunction with an antisymmetric orbital component and
a symmetric spin component,

Ψ↑↓+↓↑ =
1

2
(Ψ↑↓ + Ψ↓↑) =

1√
2

((φHe
1s (~r1)φHe

2s (~r2)− φHe
2s (~r1)φHe

1s (~r2))(↑↓ + ↓↑), (18)

and a wavefunction with a symmetric orbital component and an antisymmetric spin com-
ponent,

Ψ↑↓−↓↑ =
1

2
(Ψ↑↓ −Ψ↓↑) =

1√
2

((φHe
1s (~r1)φHe

2s (~r2) + φHe
2s (~r1)φHe

1s (~r2))(↑↓ − ↓↑). (19)

The wavefunctions Ψ↑↑, Ψ↓↓, Ψ↑↓+↓↑, and Ψ↑↓−↓↑ span the same space of functions that the
wavefunctions Ψ↑↑, Ψ↓↓, Ψ↑↓, and Ψ↓↑ do so either set can be used to describe the first
excited state of helium. We will work with the set of wavefunctions: Ψ↑↑, Ψ↓↓, Ψ↑↓+↓↑, and
Ψ↑↓−↓↑.

The orbital components of wavefunctions Ψ↑↑ , Ψ↓↓, and Ψ↑↓+↓↑ are antisymmetric and
are all identical, only their spin components are different. Spin does not appear in the
total Hamiltonian so the energies of these three states must be the same. These three form
the triplet state.
The energy of wavefunction Ψ↑↓−↓↑, the singlet, evaluates to be higher than the other
three. This is because the antisymmetric orbital wavefunction is zero when ~r1 = ~r2 so the
electron-electron repulsion is smaller for the antisymmetric orbital wavefunction.

Plots of the single and triplet wavefunction assuming that the 2s electron sees an effective
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nuclear charge of Zeff=1.15.

Three energy diagrams for helium. On the left are the energies of the atomic orbitals
evaluated with HHe

red. In the center are the energies of the atomic orbitals evaluated with
HHe

total. On the right are the true eigen energies for helium.

Exchange energy

Consider the energy difference between the singlet state and the triplet state.

∆E = 〈Ψ↑↓−↓↑|HHe
total|Ψ↑↓−↓↑〉 − 〈Ψ↑↑|HHe

total|Ψ↑↑〉 (20)

Substituting in the symmetric orbital component for Ψ↑↓−↓↑ and the antisymmetric orbital
component for Ψ↑↑ yields,

∆E =
1

2
〈φHe

1s (~r1)φHe
2s (~r2) + φHe

2s (~r1)φHe
1s (~r2)|HHe

total|φHe
1s (~r1)φHe

2s (~r2) + φHe
2s (~r1)φHe

1s (~r2)〉

−1

2
〈φHe

1s (~r1)φHe
2s (~r2)− φHe

2s (~r1)φHe
1s (~r2)|HHe

total|φHe
1s (~r1)φHe

2s (~r2)− φHe
2s (~r1)φHe

1s (~r2)〉.
(21)

After some algebra, this reduces to,

∆E = 〈φHe
1s (~r1)φHe

2s (~r2)|HHe
total|φHe

1s (~r2)φHe
2s (~r1)〉

+〈φHe
1s (~r2)φHe

2s (~r1)|HHe
total|φHe

1s (~r1)φHe
2s (~r2)〉.

(22)

The difference in energy only depends on matrix elements where the electrons at ~r1 and ~r2

get exchanged in the 〈ψ| and the |ψ〉. For this reason, ∆E is called the exchange energy.
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More accurate calculations

To determine the states of helium more accurately, we can look for better atomic orbitals.
The atomic orbitals that we have used so far neglect the electron-electron interactions.
The electrons will partially screen the positive nucleus so the true wavefunction will have
a larger diameter than the one that was calculated neglecting the electron-electron inter-
actions. This suggests that we use an atomic orbital of the form,√

Z3
e

πa3
0

exp

(
−Zer
a0

)
, (23)

where Ze is the effective charge of the nucleus. The energy of the helium ground state is
minimized for Ze = 1.69. There are a number of numerical techniques like the Hartree
Fock method or density functional theory that can be used to find better atomic orbitals.
It is known, however, that the true ground state of any interacting electron system can-
not be written in terms of products of atomic orbitals because it will include factors like
(~r1−~r2)2 which cannot be written as a product of two functions like φm(~r1)φn(~r2). Calculat-
ing the true wavefunctions that are not written as atomic orbitals is a very computationally
intensive process.

When a magnetic field is applied, a term must be added to the Hamiltonian that cou-
ples to the spin. The ground state has zero magetic moment so its energy does not change
in a magnetic field. The triplet state splits into three energy levels due to the Zeeman
effect. There are also some small details in atomic spectra like the spin-orbit interaction,
and the hyperfine interaction that will not be discussed further here.
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The energy levels for He from physics.nist.gov

Many-electron atoms

The Hamiltonian for an atom with many electrons is,

Htotal = −
N∑
i

h̄2

2m
∇2
i −

N∑
i

Ze2

4πε0|~ri|
+
∑
ij

e2

4πε0|~ri − ~rj|
. (24)
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The first sum are the kinetic energies of the electrons, the second sum are the attractive
Coulomb interactions between the electrons and the nucleus, the third sum are the repulsive
electron-electron interactions. It is not possible to find simple analytic expressions for the
eigenfunctions of this Hamiltonian. To make progress, we neglect the electron-electron
interactions. This results in the reduced Hamiltonian.

Hred = −
N∑
i

h̄2

2m
∇2
i −

N∑
i

Ze2

4πε0|~ri|
. (25)

The reduced Hamiltonian can be solved by the separation of variables. The eigenfunctions
of the reduced Hamiltonian are antisymmetrized products of atomic orbitals For instance,
the ground state configuration of beryllium is 1s22s2. The antisymmetrized four-electron
wave function for the ground state is,

Ψ(~r1, ~r2, ~r3, ~r4) =
1√
4!

∣∣∣∣∣∣∣∣
φ1s ↑ (~r1) φ1s ↓ (~r1) φ2s ↑ (~r1) φ2s ↓ (~r1)
φ1s ↑ (~r2) φ1s ↓ (~r2) φ2s ↑ (~r2) φ2s ↓ (~r2)
φ1s ↑ (~r3) φ1s ↓ (~r3) φ2s ↑ (~r3) φ2s ↓ (~r3)
φ1s ↑ (~r4) φ1s ↓ (~r4) φ2s ↑ (~r4) φ2s ↓ (~r4)

∣∣∣∣∣∣∣∣ . (26)

This is an exact solution to the reduced Hamiltonian with an energy that is the sum of
−Z213.6/n2 for the four atomic orbitals. The energy of the ground state wave function of
beryllium evaluated in the reduced Hamiltonian is -544 eV.

A better estimation for the ground state energy can be made by evaluating the energy
of this wavefunction in the total Hamiltonian which includes the electron-electron interac-
tions. This requires some effort to calculate since the determinant of a 4× 4 matrix has 24
terms and each of these must be integrated over the x-, y-, and z-components of the four
electrons. Thus we have 24 twelve-dimensional integrals to evaluate.

The many electron wave functions of the other elements can be constructed in a simi-
lar manner. There are some anomolies in the table of electron configurations.
For instance, nickel has 28 electrons and an electron configuration of 1s22s22p63s23p63d84s2

while copper has 29 electrons and an electron configuration of 1s22s22p63s23p63d104s1. The
electrons fill the 4s shell in nickel but in copper one of these electrons is removed from the
4s shell.

The mysteries of how the electron shells fill can be explained by the Schrdinger equation.
To find the ground state electron configuration of copper, guess a some candidate con-
figurations with 29 electrons such as 1s22s22p63s23p63d104s1 and 1s22s22p63s23p63d94s2,
construct the corresponding many-electron wave functions and evaluate their energies us-
ing the total Hamiltonian. The electron configuration with the lowest energy is the one
that will be observed.

It becomes increasing difficult to evaluate the energies of many-electron wavefunctions
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as the number of electrons increases. This is because the determinant of an N ×N matrix
has N! terms.
For gold with 79 electrons, there are 79! = 8.94 ∗ 10116 237-dimensional integrals that need
to be evaluated. Fortunately it is usually only necessary to include the valence electrons
in the calculation.

Slater’s rules

To get the size of the atomic orbitals correct, Slater proposed a set of rules that tell you
what effective nuclear charge Zeff should be used to take the screening of the core electrons
into account. The effective charge for the first few atomic orbitals are given in the table
below.
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