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1 Preface

The goal of this student project is to calculate the H2 bond potential in respect to the distance of
the atom cores by the method of molecule orbital theory.

We will discuss the chosen wavefunctions and the Hamiltonian Operator as well as the geometry
of the problem and the resulting integrals. Because of symmetry reasons the terms will be split up
into symmetric, repeatedly appearing integrals. We will show the integrated functions graphically
and discuss simplified numerical solution methods for electron electron interaction terms.

The result will contain the comparison of the bond potential for bonding and antibonding wave-
functions.

2 Calculation

2.1 Preconditions

First we will fix the positions of the cores (Born-Oppenheimer approximation) and use a Cartesian
coordinate system with the origin between the two cores A and B to get symmetry in each, x,y and
z-direction because we loose spherical symmetry by lining them up on the x-axis (figure 1).

Figure 1: Cartesian coordinate system setup with the cores lined up on the x-axis

In order to evaluate the bonding energy in the H2 molecule, we calculate the energy-eigenvalues of
the Schrödinger-equation (1).

E =

∫∫
ΨHΨ∗ dV1dV2∫∫
ΨΨ∗ dV1dV2

(1)

The Hamiltonian for this two core (A,B), two electron (1,2) system contains the terms shown
below.
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H =

������������− ~2

2mA
∆A −

~2

2mB
∆B︸ ︷︷ ︸

I

− ~2

2me
∆1 −

~2

2me
∆2︸ ︷︷ ︸

II

− e2

4πε0rA1
− e2

4πε0rB2︸ ︷︷ ︸
III

− e2

4πε0rA2
− e2

4πε0rB1︸ ︷︷ ︸
IV

+
e2

4πε0rAB︸ ︷︷ ︸
V

+
e2

4πε0r12︸ ︷︷ ︸
V I

(2)

Term I is cancelled due to the Born-Oppenheimer approximation (positions of the cores are fixed
→ no kinetic energy contribution of the cores).

(I) Kinetic energy of the two cores A and B

(II) Kinetic energy of the two electrons 1 and 2

(III) Coulomb interaction of every electron with its original core

(IV) Coulomb interaction of every electron with the opposite core

(V) Coulomb interaction of the two cores

(VI) Coulomb interaction of the two electrons

2.2 Molecular and atomic wavefunctions

As already mentioned in the preface, we will use the molecular orbital theory and construct the
molecular wavefunction Ψ as a linear combination of the atomic 1s wavefunctions ϕA and ϕB. In
further calculations we will use odd (3) and even (4) combinations and dismiss the corresponding
invert symmetrical spinfunctions, as they give no input to the bond potential.

Ψ = α(1)α(2) [ϕA(~r1)ϕB(~r2)− ϕA(~r2)ϕB(~r1)]︸ ︷︷ ︸
Ψo

(3)

Ψ = [α(1)β(2) + α(2)β(1)] [ϕA(~r1)ϕB(~r2) + ϕA(~r2)ϕB(~r1)]︸ ︷︷ ︸
Ψe

(4)

The atomic 1s wavefunction will be introduced normed to one, in reference to the probability
density of one electron in a single H-atom over the whole space. The additional factors of the
mixed term in order to norm the molecular wavefunction will be taken under consideration later.

ϕi(~rj) =
1√
N

e
−

|~rj |
a0 with i = A,B ; j = 1, 2 and N = πa3

0 (5)

To briefly illustrate the contribution of the electrons to the binding process, the radial probability in
the xy-plane is shown in figure 3 on page 6, calculated with formula (6). Note that this simulation
only displays a superposition of the radial probability function without taking the reshape of
the single atom orbitals (caused by disturbance of the other atom) as well as electron-electron
interaction into account.
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Pr = r2
A1|ϕ(~rA1)|2+r2

B2|ϕ(~rB2)|2 =

((
x− rAB

2

)2
+ y2 + z2

)
exp

−2

√
(x− rAB

2 )2 + y2 + z2

a0


+

((
x+

rAB

2

)2
+ y2 + z2

)
exp

−2

√
(x+ rAB

2 )2 + y2 + z2

a0

 (6)

2.3 Norm

Even though we use normed wavefunctions we have to limit our integration area (−5 Å to 5 Å) due
to numerical integration and thereafter adjust the norm. This means we allow the electrons only
to be in this specific volume. The difference of the numerical norm factor and the analytical can
later be used to discuss this simplification.

The numerical norm integral

N =

5 Å∫
−5 Å

|ϕ(x, y, z)|2 dV (7)

with the unnormalized probability density function

|ϕ(x, y, z)|2 = exp

(
−2
√
x2 + y2 + z2

a0

)
(8)

results in N = 4.6554× 10−31

Figure 2: Probability density function (8) in the xy-plane.
Blue: low values - Red: high values
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3 Integral calculation

First we concentrate on calculating the upper integral of equation (1) and split it into two identical
integrals of the squared and two identical integrals of the mixed atomic wavefunctions.

Squared terms of
∫∫

ΨHΨ∗ dV1dV2:

2

∫∫
ϕA(~r1)2ϕB(~r2)2

(
2E0︸︷︷︸

II+III

− e2

4πε0rA2
− e2

4πε0rB1︸ ︷︷ ︸
IV

+
e2

4πε0rAB︸ ︷︷ ︸
V

+
e2

4πε0r12︸ ︷︷ ︸
V I

)
dV1dV2 (9)

Mixed terms of
∫∫

ΨHΨ∗ dV1dV2:

2

∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2)

(
2E0︸︷︷︸

II+III

− e2

4πε0rA2
− e2

4πε0rB1︸ ︷︷ ︸
IV

+
e2

4πε0rAB︸ ︷︷ ︸
V

+
e2

4πε0r12︸ ︷︷ ︸
V I

)
dV1dV2 (10)

Because of symmetry reasons we can identify the following unique integrals which combine to the
expressions (9) and (10). We identify the following integrals:

C =

∫
ϕA(~r1)2

(
− e2

4πε0rB1

)
dV1

S =

∫
ϕA(~r1)ϕB(~r1) dV1

D =

∫
ϕB(~r1)ϕA(~r1)

(
− e2

4πε0rB1

)
dV1

Eei =

∫∫
ϕA(~r1)2ϕB(~r2)2 e2

4πε0r12
dV1dV2

Eeei =

∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2)

e2

4πε0r12
dV1dV2

With these unique integrals the squared terms evolve to:

(II+III):∫∫
ϕA(~r1)ϕB(~r2)

[
− ~2

2me
∆1 −

e2

4πε0rA1
− ~2

2me
∆2 −

e2

4πε0rB2

]
ϕA(~r1)ϕB(~r2) dV1dV2 = 2E0

(IV): ∫∫
ϕA(~r1)2ϕB(~r2)2

[
− e2

4πε0rA2
− e2

4πε0rB1

]
dV1dV2 = 2C
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(V): ∫∫
ϕA(~r1)2ϕB(~r2)2 dV1dV2︸ ︷︷ ︸

=1

e2

4πε0rAB
=

e2

4πε0rAB

(VI): ∫∫
ϕA(~r1)2ϕB(~r2)2 e2

4πε0r12
dV1dV2 = Eei

Thereafter (9) is:

2

[
2E0 + 2C +

e2

4πε0rAB
+ Eei

]
(11)

The mixed terms transform to:

(II+III):∫∫
ϕB(~r1)ϕA(~r2)

[
− ~2

2me
∆1 −

e2

4πε0rA1
− ~2

2me
∆2 −

e2

4πε0rB2

]
ϕA(~r1)ϕB(~r2) dV1dV2 = 2E0S

2

(IV): ∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2)

[
− e2

4πε0rA2
− e2

4πε0rB1

]
dV1dV2 = 2SD

(V): ∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2) dV1dV2︸ ︷︷ ︸

=S2

e2

4πε0rAB
= S2 e2

4πε0rAB

(VI): ∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2)

e2

4πε0r12
dV1dV2 = Eeei

Thereafter (10) is:

2

[
2E0S

2 + 2SD + S2 e2

4πε0rAB
+ Eeei

]
(12)

The Norm NΨ can be identified as:

NΨ =

∫∫
ΨΨ∗ dV1dV2 =

∫∫
ϕA(~r1)2ϕB(~r2)2 dV1dV2︸ ︷︷ ︸

=1

+ 2

∫∫
ϕA(~r1)ϕB(~r1)ϕA(~r2)ϕB(~r2) dV1dV2︸ ︷︷ ︸

=2S2

+

∫∫
ϕB(~r2)2ϕA(~r1)2 dV1dV2︸ ︷︷ ︸

=1

= 2 + 2S2 (13)
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All together, the bond potential results to

E =

∫∫
ΨHΨ∗ dV1dV2∫∫
ΨΨ∗ dV1dV2

= 2E0 +
2C ± 2DS + Eei + Eeei

1± S2
+

e2

4πε0RAB
(14)

where the upper sign has to be chosen for even, the lower for odd molecular wavefunctions.

3.1 Coulomb interaction integral C

Integral C represents the Coulomb interaction of the electron 1 in a 1s state of core A with core B
and is symmetric to the interaction of electron 2 in a 1s state of core B with core A:

C =

∫
ϕA(~r1)2

(
− e2

4πε0rB1

)
dV1 (15)

To solve this three dimensional integral we used the Matlab routine ”integral3” with an absolute
tolerance AbsTol = 10−60 over an integrated volume from −5 Å to 5 Å.

(a) Function fC in the xy-plane for rAB = 0.85 Å (b) Integral C with respect to the core distance rAB

Figure 4: Function fC and Integral C(rAB)

The xy-cut of the function fC (figure 4a) clearly shows that the integral boundaries include all
significant function values. Since fC only produces negative function values the interaction between
the electron and the core is, like physically expected, attractive. It shows that the electron 1 remains
mostly around its own core A and contributes there the main part of the interaction energy, except
it falls directly into the opposite core B producing the infinite singularity.

Figure 15 displays the increase of negative potential when the core distance decreases because the
electron is more likely around the other core. If the core distance is infinite it is obvious that the
electron doesn’t interact with the other core. Then, this process contributes nothing to the overall
potential.
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3.2 Overlap integral S

The overlap integral S represents the probability of one electron located in between the cores not
belonging to one specific atom. Like before it is symmetric for the two electrons.

S =

∫
ϕA(~r1)ϕB(~r1) dV1 (16)

The solving procedure is the same as for integral C.

(a) Function fS in the xy-plane for rAB = 0.85 Å (b) Integral S with respect to the core distance rAB

Figure 5: Function fS and Integral S(rAB)

If the core distance is approaching zero, the electron shells overlap completely and the integral
sums up to one. Again the overlap region decreases when the core distance enlarges. As we can
see, the function also decreases exponentially and contains no significant function values near the
integral boundaries.

3.3 One electron exchange integral D

D is the one electron exchange integral. It shows an electron which is in a state between the cores
(like fS (16)) interacting with one core.

D =

∫
ϕB(~r1)ϕA(~r1)

(
− e2

4πε0rB1

)
dV1 (17)

Again, the calculation is done with the Matlab routine ”integral3”.

Figure 6a displays that the integral boundaries are still valid, the electron now is mostly located
between the two cores and contributes a singularity when falling into the interacting core. Once
again, there is no difference when considering electron 1 and core B or electron 2 and core A.

If the core distance gets infinite, the overlap disappears and consequentially the integral contribution
vanishes.
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(a) Function fD in the xy-plane for rAB = 0.85 Å (b) Integral D with respect to the core distance rAB

Figure 6: Function fD and Integral D(rAB)

3.4 Repulsive Coulomb electron interaction integral Eei

Eei represents the repulsive Coulomb interaction of the electrons each being in a state around its
original core.

Eei =

∫∫
ϕA(~r1)2ϕB(~r2)2 e2

4πε0r12
dV1dV2 (18)

This function unfolds in a six dimensional integral which has to be discretized to be solved. This
is done by inserting a three dimensional grid with 283 supporting points per electron. While one
electron position is fixed, the other is allowed to be at every lattice point. To avoid both electrons
being at the same location one grid is shifted for a half grid spacing in the x-direction. All function
values are then summed up and considered as constant for close proximity.

(a) Function fEei in the xy-plane, one electron fixed (b) Integral Eei with respect to the core distance rAB

Figure 7: Function fEei and Integral Eei(rAB)
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In figure 7a we see a xy-cut surface plot of the function fEei where one electron is fixed and the
other is continuously moved. The green triangles represent the fixed electron 1 while the red
triangles represent the discrete locations of electron 2 for calculating the integral. In the shown
case electron one is exactly at the infinite peak. Because of the shift of the red grid, the second
electron is now not allowed to be at the same position, avoiding infinite rejection energy. With
this approach the discretized function is now relatively well behaved and includes the base of the
infinite peak by approximation.

3.5 Coulomb electron exchange interaction integral Eeei

Eeei is the Coulomb electron exchange interaction integral where the exchange density is used to
examine further repulsive Coulomb forces.

Eeei =

∫∫
ϕB(~r1)ϕA(~r2)ϕA(~r1)ϕB(~r2)

e2

4πε0r12
dV1dV2 (19)

The six dimensional integral is treated same as Eei and also computed with 286 lattice points
leading to 482 million function values for each core distance.

(a) Function fEeei in the xy-plane (b) Integral Eeei with respect to the core distance
rAB

Figure 8: Function fEeei and Integral Eeei(rAB)

Basically the schema is the same as in figure 7a, but now the exchange density is decisive for the
electron location. Again the infinite peak represents the point of electron collision.
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4 Result

(a) Bond potential with respect to rAB for bonding
and antibonding wavefunctions

(b) Close-up of the bonding wavefunctions minimum
Emin

Figure 9: Bond potential for bonding (Ebonding) and antibonding (Eantibonding) wavefunctions with
respect to the core distance rAB

To display the results we calculated all integrals for 28 different core distances. The first five
equidistant points ranging from 0.30 Å to 0.55 Å were spaced 0.0625 Å apart. The next region
containing the minimum held 15 points from 0.60 Å to 1.10 Å in a spacing of 0.036 Å. The last
section included eight points 1.30 Å to 4.00 Å with a equidistant spacing of 0.386 Å. The range
between the two lowest points was then investigated further with 15 points to find the minimum.

Emin = (−4.8686± 0.0001)× 10−18 J ≈ −30.4 eV (20)

at a bonding length of

rAB,min = (0.869± 0.001) Å (21)

The bonding energy from the minimum Emin to 2E0 = −4.3588 J ≈ −27.2 eV results to

Ebond = Emin − 2E0 = (0.5098± 0.0001)× 10−18 J ≈ 3.18 eV (22)
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5 Discussion

The calculated results differ from the experimental values1 which are:

Emin,exp = 4.52 eV

rAB,exp = 0.74 Å

One of the reasons for this discrepancy is the chosen wavefunction Ψ which is constructed by
spherical symmetric wavefunctions ϕ, while the H2 molecule is not spherical symmetric. This
means that the natural wavefunction for the H2 potential is likely to be not spherical symmetric. To
satisfy this circumstance, one might use p-orbitals or other non-spherical symmetric wavefunctions
to improve the calculation.

Further trade-off is made by discretization of the six dimensional electron-electron interaction
integrals (sections 3.4 and 3.5) in order to make them solvable. The results of these integrals could
be improved by using more computation resources to decrease the grid spacing.

The constriction of the integral limits and the numerical calculated norm factor contribute no
significant modification of the result due to exponential decreasing functions. The comparison of
the numerical and analytical norm factor is shown below and differs only in the seventh decimal
place.

N = 4.6554× 10−31

Nanalyt = πa3
0 = 4.6554× 10−31

N −Nanalyt = 9.1341× 10−38

1http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/hmol.html
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