
Chapter 2: Molecules

Quantum mechanics can be used to calculate any property of a molecule. The energy E
of a wavefunction Ψ evaluated for the Hamiltonian H is,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (1)

At first this seems like just a way to calculate the energy. However, this formula is used
to calculate quantities like the bond length, the bond strength and the bond angles of a
molecule. To calculate a bond length, the length is first guessed and the Hamiltonian for
that bond length is constructed, the lowest energy wavefunction for this Hamiltonian is
determined and the energy of this state is evaluated using the formula above. Then the
Hamiltonian is adjusted to have little longer bond length or a little shorter bond length
and the process is repeated until the bond length with the lowest energy is found.

This is typically a computationally intensive process but it is remarkably accurate. Quan-
tum mechanics is always correct. Discrepancies with experiment only appear when ap-
proximations are made to make the computation easier.

Many-particle Hamiltonian

The Hamiltonian that describes any molecule or solid is,

Hmp = −
∑
i

h̄2

2me

∇2
i −

∑
a

h̄2

2ma

∇2
a −

∑
a,i

Zae
2

4πε0|~ri − ~ra|

+
∑
i<j

e2

4πε0|~ri − ~rj|
+
∑
a<b

ZaZbe
2

4πε0|~ra − ~rb|
.

(2)

The first sum describes the kinetic energy of the electrons. The electrons are labeled with
the subscript i. The second sum describes the kinetic energy of all of the atomic nu-
clei. The atoms are labeled with the subscript a. The third sum describes the attractive
Coulomb interaction between the the positively charged nuclei and the negatively charge
electrons. Za is the atomic number (the number of protons) of nucleus a. The fourth sum
describes the repulsive electron-electron interactions. Notice the plus sign before the sum
for repulsive interactions. The fifth sum describes the repulsive nuclei-nuclei interactions.

This Hamiltonian neglects some small details like the spin-orbit interaction and the hy-
perfine interaction. These effects will be ignored in this discussion. If they are relevant,
they could be included as perturbations later. Remarkably, this Hamiltonian can tell us
the shape of every molecule and the energy released (or absorbed) in a chemical reaction.
Any observable quantity of any solid can also be calculated from this Hamiltonian. It turns
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out, however, that solving the Schrdinger equation associated with this Hamiltonian is usu-
ally terribly difficult. Here we will present a standard approach to determine approximate
solutions to the Schrdinger equation.

Born-Oppenheimer approximation

Since the nuclei are much heavier than the electrons, the electrons will move much faster
than the nuclei. We may therefore fix the positions of the nuclei while solving for the
electron states. The electron states are described by the electronic Hamiltonain Helec.

Helec = −
∑
i

h̄2

2me

∇2
i −

∑
a,i

Zae
2

4πε0|~ri − ~ra|
+
∑
i<j

e2

4πε0|~ri − ~rj|
+
∑
a<b

ZaZbe
2

4πε0|~ra − ~rb|
. (3)

Reduced electronic Hamiltonian

The kinetic energy of the nuclei do not appear in Helec since the nuclei have been fixed.
The last term in Helec does not depend on the positions of the electrons so it just adds a
constant to the energy. Since a constant can always be added to or subtracted from the
energy, this term will be neglected as we solve for the motion of the electrons.
The electronic Hamiltonian cannot be solved analytically; it can only be solved numerically.
To make further progress with an analytical solution, the electron-electron interaction term
is neglected. This is not easily justified on physical grounds but this is the only known
way to arrive at a reasonable analytic solution. When the electron-electron interactions are
neglected, the reduced electronic Hamiltonian Helec red can be written as a sum of molecular
orbital Hamiltonians Hmo.

Helec red = −
∑
i

h̄2

2me

∇2
i −

∑
a,i

Zae
2

4πε0|~ri − ~ra|
=
∑
i

Hmo. (4)

The eigenfunctions of this Hamiltonian can be found by the separation of variables. The
many-electron wavefunctions are antisymmetrized products of the solutions to the molec-
ular orbital Hamiltonian.

Molecular orbital Hamiltonian

The molecular orbital Hamiltonian describes the motion of a single electron in the potential
created by all of the postitive nuclei.

Hmo = − h̄2

2me

∇2 −
∑
a

Zae
2

4πε0|~r − ~ra|
. (5)

Note that while Helec red is a sum of molecular orbital Hamiltonians, all of these Hamil-
tonians are the same. Instead of having to solve a many-electron Hamiltonian, it is only
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necessary to solve a single one-electron Hamiltonian. This corresponds to a vast reduction
in the computational effort required to solve the equations.
The molecular orbitals play a similar role in describing the many-electron wavefunctions
of molecules as the atomic orbitals do in describing the many-electron wavefunctions of
atoms. There are various way to solve the molecular orbital Hamiltonian. Let’s pospone
the discussion of how to find the solutions of the molecular orbital Hamiltonian and just
assume that we have found a set of eigenfunctions,

Hmoψn = Enψn. (6)

A many-electron solution Ψ that is constructed as an antisymmetrized product of molecular
orbitals is an exact solution to Helec red and it is a good approximate solution to Helec. It
can be used to find the approximate energy of the many electron system using the equation,

E =
〈Ψ|Helec|Ψ〉
〈Ψ|Ψ〉

. (7)

As stated above, the shape of a molecule in terms of bond lengths and bond angles is
determined by finding the arrangement of the atoms that minimizes this energy.

Bond potential

To calculate the bond potential, fix the nuclei of the two atoms involved in the bond at
a certain distance apart and calculate the energy of the electronic Hamiltonian evaluated
with the ground state many-electron wave function.
Change the distance and recalculate the energy of the ground state. Repeat until the
energy has been determined as a function of distance.
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Bond length

The minimum of the bond potential gives the equilibrium bond length. Some books give
tables of bond lengths for which provide an approximate value of the bond length. The
bond length for a particular pair of atoms, like a carbon-carbon bond, is not always the
same. It depends on the other atoms in the molecule.

Bond angle

Fix the nuclei at different bond angles and calculate the energy for each case. The bond
angle with the lowest energy will be observed.

Shape of a molecule

The Schrdingrer equation can tell us if a molecule is linear or forms a ring. It can tell us
the shape of a complicated molecule like a protein or DNA.
To find the shape of a molecule, start with a guess for the shape and calcualte the energy
then make a small change in the shape and see if the energy decreases. The observed shape
of the molecule will be at the energy minimum. There may be multiple energy minima
resulting in different isomers of a molecule.

Rotational energy levels

The rotational levels of a diatomic molecule can be estimated by assuming that the atoms
remain at their equilibrium spacing r0 during rotation. In this can, the quantized energy
levels of a rigid rotator can be used,

El =
h̄2

2I
l(l + 1), (8)

where I is the moment of inertia and l is orbital quantum number, l = 0, 1, 2 · · · . For a
diatomic molecule with an equilibrium spacing of the atoms of r0 and atomic masses ma

and mb, the moment of inertia is I = mamb

ma+mb
r2

0.

A molecule with N atoms has 3N degrees of freedom. There are always three are transla-
tional degrees of freedom which describe the motion of the center of mass of the molecule.
A linear molecule (all of a the atoms are in a straight line) has two rotational degrees
of freedom. If the atoms lie along the x-axis, there can be two different rotation speeds
around the y- and z-axes. The atoms of a non-linear molecule do not all lie along a line
and there are three rotational degrees of freedom.

Vibrational energy levels

For diatomic molecules, the bond potentials can be used to find the vibrational and rota-
tional spectra of a molecule. Diatomic molecules only have one stretching mode where the

4



two atoms in a molecule vibrate with respect to each other.

In the simplest approximation, we imagine that the atoms are attached to each other
by a linear spring. The spring constant can be determined from the bond potential. Near
the minimum of the bond potential at r0, the potential can be approximated by a parabola.
This is the same potential as for a harmonic oscillator where the effective spring constant
is keff = d2U

dr2
|r=r0 and the reduced mass is mr = (1/ma + 1/mb)

−1. Here ma and mb are

the masses of the two atoms. The angular frequnecy of this vibration is ω =
√
keff/mr.

The vibrational modes of the molecule have the same energy level spectrum as a harmonic
oscillator,

Eν = h̄ω(ν + 1/2) ν = 0, 1, 2, · · · . (9)

The number of vibrational normal modes for a molecule with N atoms is 3N − 5 for a
linear molecule and 3N − 6 for a non-linear molecule.

Energy of a chemical reaction

Chemical reactions can be either exothermic (energy is released during the reaction) or
endothermic (energy is absorbed during the reaction). To calculate how much energy is
released or absorbed during a reaction, calculate the energies for all reactants and products.
The change in energy during the reaction is the sum of the energies of the products minus
the sum of energies of the reactants.

Speed of a chemical reaction

To calculate how long a chemical reaction takes, numerically integrate the time dependent
Schrdinger equation for Htotal starting with the reactants nearby each other. This is an
exceedingly computationally intensive calculation.

More accurate calculations

Ignoring the electron-electron interactions is a fairly crude approximation. There are more
sophisticated methods like Hartree-Fock or density functional theory. These methods are
not exact but do include the electron-electron interactions in an approximate form. There
are many commercial and public domain programs available for these types of calculations.

Molecular orbitals

The total quantum state of a molecule is described by a many-electron wavefunction. In
the standard approximation, the many-electron wavefunction can be expressed as a prod-
uct of single-electron wavefunctions called molecular orbitals. Molecular orbitals are used
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very much like the hydrogen wavefunctions are used to construct the many-electron wave-
functions of atoms.

In the simplest approximation, the molecular orbitals are the wavefunction of a single
electron moving in a potential created by all of the positively charged nuclei in a molecule.
The molecular orbital Hamiltonian can be written,

Hmo = − h̄2

2me

∇2 −
∑
a

Zae
2

4πε0|~r − ~ra|
. (10)

Here ~ra are the positions of the nuclei in the molecule, ~r is the position of the single elec-
tron, and a sums over the atoms in the molecule.
The molecular orbital Hamiltonian is often solved by a method called the Linear Combi-
nation of Atomic Orbitals (LCAO). It is assumed that the wave function can be written
in terms of hydrogen atomic orbitals that are centered around the nuclei,

ψmo(~r) =
∑
a

∑
ao

cao,aφ
Za
ao (~r − ~ra) . (11)

where ao labels the atomic orbitals (ao = 1 : 1s, ao = 2 : 2s, ao = 3 : 2px, · · · ). The
number of molecular orbitals that we calculate will be equal to the number of unknown
coefficients. We call this number N .
We have to decide how many atomic orbitals should be included for each atom. A reason-
able choice is to take all of the occupied atomic orbitals of the isolated atoms. For instance,
for water one might use the 1s, 2s, and 2p orbitals of oxygen and the 1s orbitals of the two
hydrogen atoms. In that case, there would be N = 7 terms in the wave function for the
molecular orbital.
There is no strict rule as to which atomic orbitals to include. Including more atomic or-
bitals leads to a higher accuracy but makes the numerical calculation more difficult.

At this point it is convenient to relabel the atomic orbitals used in the wave function with
integers p = 1 · · ·N . For water we might choose φ1 = φZ=1

1s (~r − ~rH1), φ2 = φZ=1
1s (~r − ~rH2),

φ3 = φZ=8
1s (~r − ~rO), φ4 = φZ=8

2s (~r − ~rO), etc. The trial wavefunction can then be written
more compactly as,

ψmo =
N∑
p=1

cpφp. (12)

The time independent Schrdinger equation is,

Hmoψmo = Eψmo. (13)

Multiply the Schrdinger equation from the left by each of the atomic orbitals and integrate
over all space. This results in a set of N algebraic equations called the Roothaan equations.
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〈φ1|Hmo|ψmo〉 = E〈φ1|ψmo〉
〈φ2|Hmo|ψmo〉 = E〈φ2|ψmo〉

...
〈φN |Hmo|ψmo〉 = E〈φN |ψmo〉

(14)

By substituting in the form for ψmo from above, the Roothaan equations can be written
in matrix form,

H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...
HN1 HN2 · · · HNN



c1

c2
...
cN

 = E


S11 S12 · · · S1N

S21 S22 · · · S2N
...

...
. . .

...
SN1 SN2 · · · SNN



c1

c2
...
cN

 . (15)

Here the elements of the Hamiltonian matrix and the overlap matrix are,

Hpq = 〈φp|Hmo|φq〉 and Spq = 〈φp|φq〉. (16)

The Roothaan equations can be solved numerically to find N solutions for the energy E
along with the corresponding coefficients that describe the N wave functions which are the
molecular orbitals.

Hückel model

The Hückel model is an approximation that is often made to simplify the Roothaan equa-
tions. The overlap matrix is nearly the identity matrix. For normalized atomic orbitals,
Spp = 1 so all of the diagonal elements equal 1.
If two wavefunctions φp and φq are not the same but are centered on the same nucleus then
Spq = 0 because the hydrogen atomic orbitals are orthogonal to each other.
If two wavefuntions φp and φq are centered on different nuclei that are far apart in the
molecule, then Spq ≈ 0. This only leaves off-diagonal elements of the matrix that cor-
respond to two wavefuntions φp and φq that are centered on nearby atoms. Although
these elements may not really be zero, they will be small compared to 1 and we make the
approximation,

Spp = 1 and Spq = 0 for p 6= q. (17)

The equations that need to be solved reduce to an eigenvalue problem,
H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...
HN1 HN2 · · · HNN



c1

c2
...
cN

 = E


c1

c2
...
cN

 . (18)
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Valence Bond Theory

Valence bond theory is similar to Molecular orbital theory but is mathematically simpler.
The starting point is the many-particle Hamltonian,

Hmp = −
∑
i

h̄2

2me

∇2
i −

∑
a

h̄2

2ma

∇2
a −

∑
a,i

Zae
2

4πε0|~ri − ~ra|

+
∑
i<j

e2

4πε0|~ri − ~rj|
+
∑
a<b

ZaZbe
2

4πε0|~ra − ~rb|
.

(19)

As in molecule orbital theory, the Born-Oppenheimer approximation is used. Since the
nuclei are much heavier than the electrons, the electrons will move much faster than the
nuclei.
We may therefore fix the positions of the nuclei while solving for the electron states. The
electron states are described by the electronic Hamiltonain Helec.

Helec = −
∑
i

h̄2

2me

∇2
i −

∑
a,i

Zae
2

4πε0|~ri − ~ra|
+
∑
i<j

e2

4πε0|~ri − ~rj|
+
∑
a<b

ZaZbe
2

4πε0|~ra − ~rb|
. (20)

The kinetic energy of the nuclei do not appear in Helec since the nuclei have been fixed.
The last term in Helec does not depend on the positions of the electrons so it just adds a
constant to the energy. Since a constant can always be added to or subtracted from the
energy, this term will be neglected as we solve for the motion of the electrons.
The electronic Hamiltonian cannot be solved analytically; it can only be solved numeri-
cally. To make further progress with an analytical solution in molecular orbital theory, we
negleted the electron-electron interaction terms at this point. In valence bond theory we
associate an each electron to an atom and neglect the electron-electron interactions and
the interactions between an electron and the nuclei of other atoms that it is not associated
with. The resulting Hamiltonian is a sum of atomic Hamiltonians.

Hvb = −
∑
i

h̄2

2me

∇2
i −

∑
i

Zaie
2

4πε0|~ri − ~rai|
=
∑
i

Hatomi
. (21)

Here Zai is the nuclear charge of the atom associated with electron i and ~rai is the position
of the atom associated with electron i. This Hamiltonian can be solved by the separation
of variables. Since the solutions to the atomic Hamiltonians are the atomic orbitals, the
solution to Hvb is an antisymmetrized product of atomic orbitals. This is an exact solution
to Hvb and an approximate solution to Helec. It can be used to find the approximate energy
of the many electron system using the equation,

E =
〈Ψ|Helec|Ψ〉
〈Ψ|Ψ〉

. (22)

The shape of a molecule in terms of bond lengths and bond angles is determined by finding
the arrangement of the atoms that minimizes this energy.
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HeitlerLondon theory

The most famous application of valence bond theory is Heitler and London’s description of
the hydrogen molecule. This appeared in 1927, just two years after Schrdinger proposed his
wave equation. For H2, all terms in the many-particle Hamiltonian are neglected except,

Ψ↑↑ = 1√
2

∣∣∣∣φH
1s ↑ (~r1 − ~ra) φH

1s ↑ (~r1 − ~rb)
φH

1s ↑ (~r2 − ~ra) φH
1s ↑ (~r2 − ~rb)

∣∣∣∣
= 1√

2

(
φH

1s(~r1 − ~ra)φH
1s(~r2 − ~rb)− φH

1s(~r1 − ~rb)φH
1s(~r2 − ~ra)

)
↑ (~r1) ↑ (~r2),

Ψ↓↓ = 1√
2

∣∣∣∣φH
1s ↓ (~r1 − ~ra) φH

1s ↓ (~r1 − ~rb)
φH

1s ↓ (~r2 − ~ra) φH
1s ↓ (~r2 − ~rb)

∣∣∣∣
= 1√

2

(
φH

1s(~r1 − ~ra)φH
1s(~r2 − ~rb)− φH

1s(~r1 − ~rb)φH
1s(~r2 − ~ra)

)
↓ (~r1) ↓ (~r2),

Ψ↑↓ = 1√
2

∣∣∣∣φH
1s ↑ (~r1 − ~ra) φH

1s ↓ (~r1 − ~rb)
φH

1s ↑ (~r2 − ~ra) φH
1s ↓ (~r2 − ~rb)

∣∣∣∣
= 1√

2

(
φH

1s(~r1 − ~ra) ↑ (~r1)φH
1s(~r2 − ~rb) ↓ (~r2)− φH

1s(~r1 − ~rb) ↓ (~r1)φH
1s(~r2 − ~ra) ↑ (~r2)

)
,

Ψ↓↑ = 1√
2

∣∣∣∣φH
1s ↓ (~r1 − ~ra) φH

1s ↑ (~r1 − ~rb)
φH

1s ↓ (~r2 − ~ra) φH
1s ↑ (~r2 − ~rb)

∣∣∣∣
= 1√

2

(
φH

1s(~r1 − ~ra) ↓ (~r1)φH
1s(~r2 − ~rb) ↑ (~r2)− φH

1s(~r1 − ~rb) ↑ (~r1)φH
1s(~r2 − ~ra) ↓ (~r2)

)
.

(23)

By constructing the linear combinations of the last two wave functions Ψ↑↓+↓↑ = Ψ↑↓+ Ψ↓↑
and Ψ↑↓−↓↑ = Ψ↑↓ −Ψ↓↑, the wave functions factor into an orbital part and a spin part,

Ψ↑↓+↓↑(~r1, ~r2)

=
1√
2

(
φH

1s(~r1 − ~ra)φH
1s(~r2 − ~rb)− φH

1s(~r2 − ~ra)φH
1s(~r1 − ~rb)

)
(↑ (~r1) ↓ (~r2)+ ↓ (~r1) ↑ (~r2)) ,

Ψ↑↓−↓↑(~r1, ~r2)

=
1√
2

(
φH

1s(~r1 − ~ra)φH
1s(~r2 − ~rb) + φH

1s(~r2 − ~ra)φH
1s(~r1 − ~rb)

)
(↑ (~r1) ↓ (~r2)− ↓ (~r1) ↑ (~r2)) .

The three wave functions with an antisymmetric orbital part, Ψ↑↑, Ψ↓↓, and Ψ↑↓+↓↑ all have
the same energy when evaluated with Helec. This is the triplet state. The singlet state,
Ψ↑↓−↓↑ has a different energy when evaluated with Helec. For H2, the singlet state has a
lower energy than the triplet state so the singlet state is the molecular ground state. The
bond potential for H2 can be approximated by evaluating,

E =
〈Ψ↑↓−↓↑|Helec|Ψ↑↓−↓↑〉
〈Ψ↑↓−↓↑|Ψ↑↓−↓↑〉

, (24)

as a function of the distance between the atoms.
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It is interesting to compare the ground state wave function found by Heitler and Lon-
don to that found by molecular orbital theory:

Ψ(~r1, ~r2)

=
1

2
√

2

(
φH1s(~r1 − ~ra) + φH1s(~r1 − ~rb)

) (
φH1s(~r2 − ~ra) + φH1s(~r2 − ~rb)

)
(↑ (~r1) ↓ (~r2)− ↓ (~r1) ↑ (~r2)) .

(25)

The ground state found by molecular orbital theory has two additional terms and evaluates
to a lower energy with Helec than the valence bond wave function. The molecular orbital
wave function is closer to the true ground state.
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Some molecular orbital calculations:

Molecular orbitals of the molecular ion H+
2

The molecular ion H+
2 consists of one electron and two protons. The molecular orbital

Hamiltonian in this case is,

HH+
2

mo = − h̄2

2me

∇2 − e2

4πε0|~r − ~rA|
− e2

4πε0|~r − ~rB|
, (1)

where ~rA and ~rB are the positions of the two protons. Consider a linear combination of
the two 1s orbitals, ψmo = c1φ1s(~r−~rA) + c2φ1s(~r−~rB). The time independent Schrdinger
equation is,

Hmoψmo = Eψmo. (2)

Multiply the Schrdinger equation from the left by each of the atomic orbitals and integrate
over all space. This results in a set of 2 algebraic equations called the Roothaan equations.

〈φ1s(~r − ~rA)|Hmo|ψmo〉 = E〈φ1s(~r − ~rA)|ψmo〉
〈φ1s(~r − ~rB)|Hmo|ψmo〉 = E〈φ1s(~r − ~rB)|ψmo〉

(3)

By substituting in the form for ψmo from above, the Roothaan equations can be written
in matrix form, [

H11 H12

H12 H11

] [
c1

c2

]
= E

[
S11 S12

S12 S11

] [
c1

c2

]
, (4)

where
H11 = 〈φ1s(~r − ~rA)|Hmo|φ1s(~r − ~rA)〉,
H12 = 〈φ1s(~r − ~rA)|Hmo|φ1s(~r − ~rB)〉,
S11 = 〈φ1s(~r − ~rA)|φ1s(~r − ~rA)〉 = 1,
S12 = 〈φ1s(~r − ~rA)|φ1s(~r − ~rB)〉.

(5)

From experience with 2 × 2 matrices of this form, we know that the eigenvectors of both
the Hamiltonian matrix and the overlap matrix are,[

c1

c2

]
=

[
1
1

]
,

[
1
−1

]
(6)

It is easy to check that these are the correct eigenvectors but letting H and S operate on
them. The energies are,

E+ =
H11 +H12

1 + S12

, E− =
H11 −H12

1− S12

. (7)

The normalized molecular orbitals are,

ψ± =
1√
2

(φ1s(~r − ~rA)± φ1s(~r − ~rB)) (8)

Both H11 and H12 will turn out to be negative so the bonding orbital ψ+, has a lower
energy than the antibonding orbital ψ−.
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Determining the matrix elements H11, H12, S11, and S12

The 1s atomic orbital has the form,

φ1s =
1√
πa3

0

exp

(
− r

a0

)
. (9)

For normalized wavefunctions, the diagonal elements of the overlap matrix are equal to 1,
S11 = 〈φ1s(~r − ~rA)|φ1s(~r − ~rA)〉 = 1.

The overlap integral S12 of two 1s orbitals located at positions ~r1 and ~r2 is,

S12 = 〈φ1s(~r − ~r1)|φ1s(~r − ~r2)〉. (10)

For a hydrogen molecule, ~r1 = −0.38 x̂ and ~r2 = 0.38 x̂. Below φ1s(~r − ~r1)φ1s(~r − ~r2) is
plotted along the x-axis and along the y-axis.
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The diagonal Hamiltonian matrix element with two 1s orbitals located at position ~r1 is,

H11 =
〈
φ1s(~r − ~r1)

∣∣∣∣− h̄2

2m
∇2 − e2

4πε0|~r − ~r1|
− e2

4πε0|~r − ~r2|

∣∣∣∣φ1s(~r − ~r1)
〉
. (11)

This can be broken into two terms,

H11 =
〈
φ1s(~r − ~r1)

∣∣∣∣− h̄2

2m
∇2 − e2

4πε0|~r − ~r1|

∣∣∣∣φ1s(~r − ~r1)
〉

+
〈
φ1s(~r − ~r1)

∣∣∣∣− e2

4πε0|~r − ~r2|

∣∣∣∣φ1s(~r − ~r1)
〉
.

(12)

The wave function φ1s(~r−~r1) is an eigenfunction of the atomic orbital Hamiltonian in the
first term Hφ1s(~r − ~r1) = E1φ1s(~r − ~r1), so the first term is easily evaluated,

H11 = E1 −
〈
φ1s(~r − ~r1)

∣∣∣∣ e2

4πε0|~r − ~r2|

∣∣∣∣φ1s(~r − ~r1)
〉
. (13)

The second term has a singularity at ~r2 which makes it difficult to evaluate numerically.
We break the second term into an integral over a spherical volume of radius δ centered
around ~r2 and a second integral outside that volume.

H11 = E1 −
∫

|~r−~r2|<δ

φ1s(~r − ~r1)
e2

4πε0|~r − ~r2|
φ1s(~r − ~r1)d3r

−
∫

|~r−~r2|>δ

φ1s(~r − ~r1)
e2

4πε0|~r − ~r2|
φ1s(~r − ~r1)d3r.

(14)
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Close to ~r2, exp
(
−|~r−~r1|
a0

)
≈ exp

(
−|~r2−~r1|

a0

)
. Using this approximation, the first integral

which includes the singularity can be performed analytically for small δ.

H11 = E1 −
e2δ2

2πε0a3
0

exp(−2|~r1 − ~r2|/a0)

−
∫
H(|~r − ~r2| − δ)φ1s(~r − ~r1)

e2

4πε0|~r − ~r2|
φ1s(~r − ~r1)d3r,

(15)

The second integral integrates over all space but a Heaviside step function has been intro-
duced. H(|~r−~r2|− δ) = 0 for |~r−~r2| < δ and is 1 otherwise. The second integral contains
no singularity and can be evaluated numerically.

The integrand of the matrix element plotted along the x-axis for δ = a0/10.

Similarly, the off-diagonal Hamiltonian matrix element with two 1s orbitals located at
positions ~r1 and ~r2 is,

H12 =
〈
φ1s(~r − ~r1)

∣∣∣∣− h̄2

2m
∇2 − e2

4πε0|~r − ~r1|
− e2

4πε0|~r − ~r2|

∣∣∣∣φ1s(~r − ~r2)
〉
. (16)

This can be broken into two terms,

H12 =
〈
φ1s(~r − ~r1)

∣∣∣∣− h̄2

2m
∇2 − e2

4πε0|~r − ~r2|

∣∣∣∣φ1s(~r − ~r2)
〉

+
〈
φ1s(~r − ~r1)

∣∣∣∣− e2

4πε0|~r − ~r1|

∣∣∣∣φ1s(~r − ~r2)
〉
.

(17)

The wave function φ1s(~r−~r2) is an eigenfunction of the atomic orbital Hamiltonian in the
first term Hφ1s(~r − ~r2) = E1φ1s(~r − ~r2), so the first term is easily evaluated,

H12 = E1S12 −
〈
φ1s(~r − ~r1)

∣∣∣∣ e2

4πε0|~r − ~r1|

∣∣∣∣φ1s(~r − ~r2)
〉
. (18)
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The second term has a singularity at ~r1 which makes it difficult to evaluate numerically.
We break the second term into an integral over a spherical volume of radius δ centered
around ~r1 and a second integral outside that volume.

H12 = E1S12 −
∫

|~r−~r1|<δ

φ1s(~r − ~r1)
e2

4πε0|~r − ~r1|
φ1s(~r − ~r2)d3r

−
∫

|~r−~r1|>δ

φ1s(~r − ~r1)
e2

4πε0|~r − ~r1|
φ1s(~r − ~r2)d3r.

(19)

Close to ~r1, exp
(
−Z|~r−~r2|

a0

)
≈ exp

(
−Z|~r1−~r2|

a0

)
. Using this approximation, the first integral

which includes the singularity can be performed analytically for small δ.

H12 = E1S12 −
Z4e2

πa2
0ε0

(a0 − exp(−δZ/a0)(a0 + δZ)) exp(−Z|~r1 − ~r2|/a0)

−
∫
H(|~r − ~r1| − δ)φ1s(~r − ~r1)

e2

4πε0|~r − ~r1|
φ1s(~r − ~r2)d3r,

(20)

The second integral integrates over all space but a Heaviside step function has been intro-
duced. H(|~r−~r1|− δ) = 0 for |~r−~r1| < δ and is 1 otherwise. The second integral contains
no singularity and can be evaluated numerically.

The integrand of the matrix element plotted along the x-axis for δ = a0/10.

To calculate the bond potential, the energy of the ground-state wavefunction is evaluated
with the Hamiltonian that includes the proton-proton interaction energy.

HH+
2 = − h̄2

2me
∇− e2

4πε0|~r−~rA|
− e2

4πε0|~r−~rB |
+ e2

4πε0|~rA−~rB |
. (21)
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For a given distance between the protons, |~rA−~rB|, the energy is evaluated by calculating,

E =
〈ψ+|HH+

2 |ψ+〉
〈ψ+|ψ+〉

. (22)

Molecular orbitals of H2

The simplest neutral molecule is molecular hydrogen, H2, which consists of two electrons
and two protons. The molecular orbital Hamiltonian in this case is the same as it is for
the molecular hydrogen ion and the molecular orbitals are the same as for the molecular
ion.

HH2
mo = − h̄2

2me

∇2 − e2

4πε0|~r − ~rA|
− e2

4πε0|~r − ~rB|
, (23)

where ~rA and ~rB are the positions of the two protons. Consider a linear combination of
the two 1s orbitals, ψmo = c1φ1s(~r−~rA) + c2φ1s(~r−~rB). The time independent Schrdinger
equation is,

Hmoψmo = Eψmo. (24)

Multiply the Schrdinger equation from the left by each of the atomic orbitals and integrate
over all space. This results in a set of 2 algebraic equations called the Roothaan equations.

〈φ1s(~r − ~rA)|Hmo|ψmo〉 = E〈φ1s(~r − ~rA)|ψmo〉
〈φ1s(~r − ~rB)|Hmo|ψmo〉 = E〈φ1s(~r − ~rB)|ψmo〉

(25)

By substituting in the form for ψmo from above, the Roothaan equations can be written
in matrix form, [

H11 H12

H12 H11

] [
c1

c2

]
= E

[
S11 S12

S12 S11

] [
c1

c2

]
, (26)

where

H11 = 〈φ1s(~r − ~rA)|HH2
mo |φ1s(~r − ~rA)〉,

H12 = 〈φ1s(~r − ~rA)|HH2
mo |φ1s(~r − ~rB)〉,

S11 = 〈φ1s(~r − ~rA)|φ1s(~r − ~rA)〉 = 1,
S12 = 〈φ1s(~r − ~rA)|φ1s(~r − ~rB)〉.

(27)

From experience with 2 × 2 matrices of this form, we know that the eigenvectors of both
the Hamiltonian matrix and the overlap matrix are,[

c1

c2

]
=

[
1
1

]
,

[
1
−1

]
(28)

It is easy to check that these are the correct eigenvectors but letting H and S operate on
them. The energies are,
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E+ =
H11 +H12

1 + S12

, E− =
H11 −H12

1− S12

. (29)

The normalized molecular orbitals are,

ψ± =
1√
2

(φ1s(~r − ~rA)± φ1s(~r − ~rB)) (30)

The calculation of the matrix elements H11, H12, S11, and S12, is discussed on the page for
the molecular hydrogen ion. The calculations are identical in this case. Both H11 and H12

are negative so the bonding orbital ψ+, has a lower energy than the antibonding orbital
ψ−. The difference in the bond potentials for H2 and H2

+ comes from how the ground
state energy is evaluated.
For H2

+, there is only one electron so there are no electron-electron interactions. For
H2, we must use a properly antisymmetrized two-electron wavefunction and include the
electron-electron interactions. The two-electron ground state wavefunction for molecular
hydrogen is,

Ψ(~r1, ~r2) =
1√
2

∣∣∣∣ψ+ ↑ (~r1) ψ+ ↓ (~r1)
ψ+ ↑ (~r2) ψ+ ↓ (~r2)

∣∣∣∣
=

1

2
√

2
(φ1s(~r1 − ~rA) + φ1s(~r1 − ~rB)) (φ1s(~r2 − ~rA) + φ1s(~r2 − ~rB)) (↑↓ − ↓↑).

(31)

To calculate the bond potential, the energy of the two-electron wavefunction is evaluated
with the electronic Hamiltonian that includes the electron-electron interactions and the
proton-proton interactions.

HH2
elec = − h̄2

2me
∇2

1 − h̄2

2me
∇2

2 − e2

4πε0|~r1−~rA|
− e2

4πε0|~r1−~rB |
− e2

4πε0|~r2−~rA|
− e2

4πε0|~r2−~rB |
+ e2

4πε0|~r1−~r2| + e2

4πε0|~rA−~rB |
.

(32)

For a given distance between the protons, |~rA−~rB|, the energy is evaluated by calculating,

E =
〈Ψ|HH2

elec|Ψ〉
〈Ψ|Ψ〉

. (33)

This is a six-dimensional integral because it is necessary to integrate over the x, y, and z
components of ~r1 and ~r2. The integral is difficult because of the singularities that occur
when ~r1 = ~rA, ~r1 = ~rB, ~r2 = ~rA, ~r2 = ~rB, or ~r1 = ~r2.

The enegy is calculated as a function of the distance |~rA − ~rB| which results in a plot
of the bond potential like the one below.

7



Electronic excitations

The first excited state of an H2 molecule has one electron in the bonding ψ+ orbital and
one in the antibonding ψ− orbital. This state will be split into a spin singlet and a spin
triplet. There are four possible spin states: ↑↑, ↓↓, ↓↑, ↑↓. Four Slater determinants can
be constructed for the four spin possibilities. These four two-electron wavefunctions span
a certain function space.

The functions with spin ↑↑ and ↓↓ have an antisymmetric orbital part of the wavefunc-
tion. Make a transformation of the wavefunctions with spin ↓↑ and ↑↓ to wavefunctions
with spin (↓↑ + ↑↓)/

√
2 and (↓↑ − ↑↓)/

√
2. The wavefunction with spin (↓↑ + ↑↓)/

√
2

has an antisymmetric orbital part while the wavefunction with spin (↓↑ − ↑↓)/
√

2 has a
symmetric orbital part.
When the energies of these four wavefunctions are evaluated using the HH2

elec Hamiltonian,
the three wavefunctions with the antisymmetric orbital part will have the same energy;
this is the spin triplet. The one wavefunction with the symmetric orbital part will have a
different energy and is the spin singlet. If a magnetic field is applied, it will couple to the
spin and split the spin triplet state into three energy levels.

Vibrational states

The quantum calculations of the bond potential yields a bond length of r0 = 0.74 Å and a
dissociation energy U0 = 4.52 eV. These parameters can be used with the Morse potential
to calculate the vibrational states of the H2 molecule. Since there are two atoms in this
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molecule there are six degrees of freedom corresponding to the x, y, and z motion of the
two atoms.
There are 3 translational degrees of freedom. Since is a linear molecule, there are two
rotational degrees of freedom. This means there is just one vibration degree of freedom
(3N − 5 = 1).

Rotational states

The rotational energy levels can be estimated using a rigid rotator model where the energies
are given by,

El =
h̄2

2I
l(l + 1) l = 0, 1, 2, · · · , (34)

where I is the moment of inertia. The quantum calculations of the bond potential yields
a bond length of r0 = 0.74Å. This can be used to calculate the moment of inertia,

I = 2mH(r0/2)2 = 4.58× 10−48 kg m2, (35)

where mH is the mass of a hydrogen atom. The energy between the l = 0 and l = 1 levels
is,

∆E =
h̄2

I
= 2.4× 10−21 J = 15 meV. (36)

This agrees with the value calculated from the spectroscopic constants.

Molecular orbitals of benzene

Benzene (C6H6) consists of 6 carbon atoms in a ring. A hydrogen atom is attached to each
carbon atom. The carbon-carbon bond length is 1.40 Å and the carbon-hydrogen bond
length is 1.10 Å.

The molecular orbital Hamiltonian is,
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Hmo = − h̄2

2me

∇2 −
A∑
a=1

Zae
2

4πε0|~r − ~ra|
. (37)

Here a sums over all of the atoms in the molecule. For bezene there is one Coulomb term
for each carbon atom with Z = 6 and one Coulomb term for each hydrogen atom with
Z = 1.

Carbon has 6 electrons. Two electrons occupy the 1s orbital. Three electrons partici-
pate in sp2 bonds with the neighboring carbon atoms or with a hydrogen atom. The sixth
electron occupies the 2pz orbital which is half filled. The valence orbitals are the 6 carbon
2pz orbitals. Using the LCAO method, we guess that a good solution to the molecular
orbital Hamiltonian can be found in terms of a linear combination of the valence orbitals.

ψmo = c1φ
C
2pz(~r − ~r1) + c2φ

C
2pz(~r − ~r2) + c3φ

C
2pz(~r − ~r3)

+c4φ
C
2pz(~r − ~r4) + c5φ

C
2pz(~r − ~r5) + c6φ

C
2pz(~r − ~r6).

(38)

Here ci are constants that need to be determined and φC2pz(~r) is the 2pz atomic orbital with
Z = 6. This wavefunction is inserted into the time-independent Schrdinger equation,

Hmoψmo = Eψmo. (39)

Multipling the Schrdinger equation from the left by each of the atomic orbitals results in
a set of N algebraic equations called the Roothaan equations.

〈φC2pz(~r − ~r1)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r1)|ψmo〉
〈φC2pz(~r − ~r2)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r2)|ψmo〉
〈φC2pz(~r − ~r3)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r3)|ψmo〉
〈φC2pz(~r − ~r4)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r4)|ψmo〉
〈φC2pz(~r − ~r5)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r5)|ψmo〉
〈φC2pz(~r − ~r6)|Hmo|ψmo〉 = E〈φC2pz(~r − ~r6)|ψmo〉

(40)

The Roothaan equations can be written in matrix form,


H11 H12 H13 H14 H15 H16

H21 H22 H23 H24 H25 H26

H31 H32 H33 H34 H35 H36

H41 H42 H43 H44 H45 H46

H51 H52 H53 H54 H55 H56

H61 H62 H63 H64 H65 H66




c1

c2

c3

c4

c5

c6

 = E


S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66




c1

c2

c3

c4

c5

c6

 .
(41)

Here the elements of the Hamiltonian matrix and the overlap matrix are,
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Hij = 〈φC2pz(~r − ~ri)|Hmo|φC2pz(~r − ~rj)〉 and

Sij = 〈φC2pz(~r − ~ri)|φ
C
2pz(~r − ~rj)〉.

(42)

In general, the Roothaan equations must be solved numerically.
A common approximation that is made is to assume that the overlap matrix equals the
identity matrix S = I. In that case, the Roothaan equations reduce to an eigenvalue prob-
lem H~c = E~c which can easily be solved by a program like Matlab or Mathematica.
There are six eigen energies E and six sets of coefficients ci that describe the molecular
orbitals. The molecular orbitals can each be occupied by two electrons, one with spin up
and one with spin down. In the ground state, the 6 electrons will occupy the 3 molecular
orbitals with the lowest energies.

Benzene is a speical case where some progress can be made analytically. Elements of
the Hamiltonian matrix and the overlap matrix corresponding to orbitals that are not on
the same atom or on neighboring atoms are negligibly small and are set to zero.
Because of the symmetry of the molecule all of the diagonal elements are the same and the
elements corresponding to orbitals on neighboring sites are the same. The only integrals
that need to be calculated are S11, S12, H11, and H12. Assuming that ~r1 = 0,

S11 = 〈φC2pz(~r)|φ
C
2pz(~r)〉, (43)

where,

φC2pz =
1

4

√
63

2πa3
0

6r

a0

exp

(
−3r

a0

)
cos θ. (44)

S11 =

2π∫
0

π∫
0

∞∫
0

1

16

216

2πa3
0

36r2

a2
0

exp

(
−6r

a0

)
cos2 θr2 sin θdrdθdϕ. (45)

The three integrals can be evaluated,

2π∫
0

dϕ = 2π,

π∫
0

cos2 θ sin θdθ =
2

3
,

∞∫
0

1

16

216

2πa3
0

36r2

a2
0

exp

(
−6r

a0

)
r2dr =

3

4π
.

(46)

Thus,
S11 = 1. (47)

To calculate S12 it is conventient to use Cartiesian coordinates where z = r cos θ,

φC2pz =
1

4

√
63

2πa3
0

6z

a0

exp

(
−3
√
x2 + y2 + z2

a0

)
. (48)
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The Roothaan equations take the form,
H11 H12 0 0 0 H12

H12 H11 H12 0 0 0
0 H12 H11 H12 0 0
0 0 H12 H11 H12 0
0 0 0 H12 H11 H12

H12 0 0 0 H12 H11




c1

c2

c3

c4

c5

c6

 = E


1 S12 0 0 0 S12

S12 1 S12 0 0 0
0 S12 1 S12 0 0
0 0 S12 1 S12 0
0 0 0 S12 1 S12

S12 0 0 0 S12 1




c1

c2

c3

c4

c5

c6

 .
(49)

The matrix on each side of this equation can be written in terms of the identity matrix I,
the translation operator T, and the inverse of the translation operator T−1.

H = H11I +H12T +H12T
−1 S = I + S12T + S12T

−1 (50)

The eigenvectors of these matrices are also eigenvectors of the translation operator,
eiπ/3

ei2π/3

−1
ei4π/3

ei5π/3

1

 ,

ei2π/3

ei4π/3

1
ei8π/3

ei10π/3

1

 ,

−1
1
−1
1
−1
1

 ,

ei4π/3

ei8π/3

1
ei16π/3

ei20π/3

1

 ,

ei5π/3

ei10π/3

−1
ei20π/3

ei25π/3

1

 ,


1
1
1
1
1
1

 . (51)

The eigen energies are,

Emo,j =
H11 + 2H12 cos

(
πj
3

)
1 + 2S12 cos

(
πj
3

) j = 1, 2, · · · , 6. (52)

The molecular orbitals are,

ψmo,j =
1√
6

6∑
n=1

exp

(
iπnj

3

)
φC2pz(~r − ~rn) j = 1, 2, · · · , 6. (53)

There are 6 valence electrons and we have calculated 6 molecular orbitals. In the ground
state, the 6 electrons will occupy the 3 molecular orbitals with the lowest energies. Because
H12 < 0, the occupied orbitals are ψmo,6, ψmo,1 and ψmo,5. ψmo,6 has the lowest energy and
ψmo,1 and ψmo,5 have the same energy.

Molecular orbitals of a conjugated ring

The Roothaan equations for a conjugated ring of N atoms have the form,
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H11 H12 0 · · · 0 H12

H12 H11 H12 0 0

0 H12 H11 H12
. . .

...
...

. . . . . . . . . . . . 0
0 0 H12 H11 H12

H12 0 · · · 0 H12 H11





c1

c2

c3

c4
...
cN


= E



1 S12 0 · · · 0 S12

S12 1 S12 0 0

0 S12 1 S12
. . .

...
...

. . . . . . . . . . . . 0
0 0 S12 1 S12

S12 0 · · · 0 S12 1





c1

c2

c3

c4
...
cN


.

(54)
In general, the Roothaan equations must be solved numerically. A common approximation
that is made is to assume that the overlap matrix equals the identity matrix S = I. In
that case, the Roothaan equations reduce to an eigenvalue problem H~c = E~c which can
easily be solved by a program like Matlab or Mathematica.
The conjugated ring is a special case where some progress can be made analytically. The
eigen vectors of the Hamiltonian matrix and the overlap matrix are also the eigen vectors
of the translation operator. The energies of the molecular orbitals are,

Emo,j =
H11 + 2H12 cos

(
2πj
N

)
1 + 2S12 cos

(
2πj
N

) j = 1, 2, · · · , N. (55)

The molecular orbitals are,

ψmo,j =
1√
N

N∑
n=1

exp

(
i2πnj

N

)
φC2pz(~r − ~rn) j = 1, 2, · · · , N. (56)

There are valence electrons will occupy the molecular orbitals with the lowest energies.
Because H12 < 0, the molecular orbital with the lowest energy is ψmo,N .

Molecular orbitals of a conjugated chain

The Roothaan equations for a conjugated chain of N atoms have the form,

H11 H12 0 · · · 0 0
H12 H11 H12 0 0

0 H12 H11 H12
. . .

...
...

. . . . . . . . . . . . 0
0 0 H12 H11 H12

0 0 · · · 0 H12 H11





c1

c2

c3

c4
...
cN


= E



1 S12 0 · · · 0 0
S12 1 S12 0 0

0 S12 1 S12
. . .

...
...

. . . . . . . . . . . . 0
0 0 S12 1 S12

0 0 · · · 0 S12 1





c1

c2

c3

c4
...
cN


.

(57)
In general, the Roothaan equations must be solved numerically. A common approximation
that is made is to assume that the overlap matrix equals the identity matrix S = I. In
that case, the Roothaan equations reduce to an eigenvalue problem H~c = E~c which can
easily be solved by a program like Matlab or Mathematica.
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The conjugated chain is a special case where some progress can be made analytically.
We know from experience that the eigenvectors of matrices like those in the Roothaan
equations have the form, 

sin
(

πj
N+1

)
sin
(

2πj
N+1

)
sin
(

3πj
N+1

)
...

sin
(
Nπj
N+1

)

 j = 1, 2, · · · , N. (58)

This can be checked by substituting the eigenvectors into the Roothaan equations,
H11 sin

(
πj
N+1

)
+H12 sin

(
2πj
N+1

)
H12 sin

(
πj
N+1

)
+H11 sin

(
2πj
N+1

)
+H12 sin

(
3πj
N+1

)
H12 sin

(
2πj
N+1

)
+H11 sin

(
3πj
N+1

)
+H12 sin

(
4πj
N+1

)
...

H12 sin
(

(N−1)πj
N+1

)
+H11 sin

(
Nπj
N+1

)



= E


sin
(

πj
N+1

)
+ S12 sin

(
2πj
N+1

)
S12 sin

(
πj
N+1

)
+ sin

(
2πj
N+1

)
+ S12 sin

(
3πj
N+1

)
S12 sin

(
2πj
N+1

)
+ sin

(
3πj
N+1

)
+ S12 sin

(
4πj
N+1

)
...

S12 sin
(

(N−1)πj
N+1

)
+ sin

(
Nπj
N+1

)

 .
(59)

Using the trigonometric relations sin a+ sin b = 2 sin
(
a+b

2

)
cos
(
a−b

2

)
, sin a cos b = sin(a+b)

2
+

sin(a−b)
2

, and sin 2a = 2 sin a cos a,

(
H11 + 2H12 cos

(
πj

N + 1

))


sin
(

πj
N+1

)
sin
(

2πj
N+1

)
sin
(

3πj
N+1

)
...

sin
(
Nπj
N+1

)

 = E

(
1 + 2S12 cos

(
πj

N + 1

))


sin
(

πj
N+1

)
sin
(

2πj
N+1

)
sin
(

3πj
N+1

)
...

sin
(
Nπj
N+1

)


j = 1, 2, · · · , N.

(60)

The energies of the molecular orbitals are,

Emo,j =
H11 + 2H12 cos

(
πj
N+1

)
1 + 2S12 cos

(
πj
N+1

) j = 1, 2, · · · , N. (61)

The normalized molecular orbitals are,

ψmo,j =

√
2

N + 1

N∑
n=1

sin

(
πnj

N + 1

)
φpz,n j = 1, 2, · · · , N. (62)
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There are valence electrons will occupy the molecular orbitals with the lowest energies.
Because H12 < 0, the molecular orbital with the lowest energy is ψmo,1 and the molecular
orbital with the highest energy is ψmo,N .
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