YBa₂Cu₃O_x

Meissner effect

Superconductors are perfect diamagnets at low fields. B = 0 inside a bulk superconductor.

Superconductors are used for magnetic shielding.

Organische Supraleiter:

Polymere hochdotierte Halbleiter

11,2 K

http://www.wmi.badw.de/teaching/Lecturenotes/index.html

Compound	T _c , in K	Compound	T_c , in K
Nb ₃ Sn Nb ₃ Ge Nb ₃ Al NbN	$ 18.05 \\ 23.2 \\ 17.5 \\ 16.0 \\ 19.2 $	$egin{aligned} V_3Ga\ V_3Si\ YBa_2Cu_5O_{6.9}\ Rb_2CsC_{60}\ MgB_2 \end{aligned}$	16. 5 17.1 90. 0 31. 3 39. 0
K-3 C6J			

д,

$BaPb_{0.75}Bi_{0.25}O_3$ $La_{1.85}Ba_{0.15}CuO_4$ $VBaCuC$	$T_c = 12 \text{ K}$ $T_c = 36 \text{ K}$	[BPBO] [LBCO]
$Tba_{2}Cu_{3}O_{7}$ $Tl_{2}Ba_{2}Ca_{2}Cu_{3}O_{10}$ $Hg_{0.8}Tl_{0.2}Ba_{2}Ca_{2}Cu_{3}O_{8.33}$	$T_c = 90 \text{ K}$ $T_c = 120 \text{ K}$ $T_c = 138 \text{ K}$	[YBCO] [TBCO]
$(Sn_5In)Ba_4Ca_2Cu_{10}O_y$	$T_c = 212 \text{ K}$	

*

Isotope effect

Superconductivity

```
Critical temperature T_c
```

Critical current density J_c

Superconductivity

Perfect diamagnetism

Jump in the specific heat like a 2nd order phase transition, not a structural transition

Superconductors are good electrical conductors but poor thermal conductors, electrons no longer conduct heat

There is a dramatic decrease of acoustic attenuation at the phase transition, no electron-phonon scattering

Dissipationless currents - quantum effect

Electrons condense into a single quantum state - low entropy.

Electron decrease their energy by Δ but loose their entropy.

Density of states

Condensate at E_F

Build wave packets out of states near E_F - Cooper pairs exchange electrons $\Psi \rightarrow -\Psi$ exchange CP $\Psi \rightarrow \Psi$ no states within Δ of E_F

Tunneling spectroscopy

Buckel - Superconductivity

C

10

Institute of Solid State Physics

Technische Universität Graz

BCS theory (1957)

Electrons form Cooper pairs

Electrons condense into a coherent state. Similar to: Superfluidity **Bose-Einstein condensates** Lasers

Pauli exclusion: the sign of the wavefunction changes when two electrons are exchanged.

1972

BCS results

$$\frac{\Delta(0)}{k_B T} = 1.76$$

 $\frac{C_s - C_n}{C_n} \bigg|_{T}$

=1.43

 $|_{T=T_c}$

Al

Cd

In

Hg

Nb

Pb

Sn

Type I and Type II

 $\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right)$

Superconductors are perfect diamagnets at low fields. B=0 inside a bulk superconductor.

Superconducting Magnets

Whole body MRI

ITER

Superconducting magnets

Largest superconducting magnet, CERN 21000 Amps

Magnets and cables

Maglev trains

Vortices in Superconductors

STS image of the vortex lattice in NbSe₂. (630 nm x 500 nm, B = .4 Tesla, T = 4 K)

 $http://www.insp.upmc.fr/axe1/Dispositifs\%20 quantiques/AxeI2_more/VORTICES/vortexHD.htm$