
Phonons and 
Magnons



Phonons

Natom atoms in crystal
3Natom normal modes
p atoms in the basis
Natom/p unit cells
Natom/p translational symmetries
Natom/p  k-vectors
3p modes for every k vector
3 acoustic branches and 3p-3 optical branches



fcc phonons

3N degrees of freedom



fcc phonons

energy spectral density

internal energy density specific heat



http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/phonontable.html



NaCl

2 atoms/unit cell

6 equations

3 acoustic and 
3 optical branches
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NaCl

Two atoms per primitive unit cell

Si



CsCl
M1 = M2

M1 = 5M2M1 = 2M2

M1 = 1.1 M2

Hannes Brandner



GaAs Hannes Brandner



Phonon quasiparticle lifetime 

Phonons are the eigenstates of the linearized equations, not the full equations.

Phonons have a finite lifetime that can be calculated by Fermi's golden rule.
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Occupation is determined by a master equation (not the Bose-Einstein function). 
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Acoustic attenuation 

The amplitude of a monocromatic sound wave decreases as the wave propagates 
through the crystal as the phonon quasiparticles decay into phonons with other 
frequencies and directions. 



Magnons

Magnons are excitations of the ordered ferromagnetic state



Magnons
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Energy of the Heisenberg term involving spin p

The magnetic moment of spin p is

p B pg S  
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This has the form -p
.Bp where Bp is
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Magnons

The rate of change of angular momentum is the torque
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p B pg S  
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If the amplitude of the deviations from perfect alignment along 
the z-axis are small:
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Magnons
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These are coupled linear differential equations. The solutions 
have the form:
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Cancel a factor of eikpa.



Magnons
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These equations will have solutions when,

The dispersion relation is:

 4 1 cos( )J S ka  
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Magnon dispersion relation

 4 1 cos( )JS ka  

A phonon dispersion relation
would be linear at the origin



Magnon density of states

 4 1 cos( )JS ka  

Mathematically this is the same problem as the tight binding model for electrons 
on a one-dimensional chain.





Ferromagnetic magnons - simple cubic 

The dispersion relation in one dimension:

 4 1 cos( )J S ka  

The dispersion relation for a cubic lattice in three dimensions:

2 cos( )J S z k


  
   

 


 


The magnon contribution to thermodynamic properties can be calculated  
similar to the phonon contribution to the thermodynamic properties.


