Magnons and Plasmons

Ferromagnetic magnons - simple cubic

The dispersion relation in one dimension:

$$\hbar\omega = 4J \left| S \right| (1 - \cos(ka))$$

The dispersion relation for a cubic lattice in three dimensions:

$$\hbar \omega = 2J \left| S \right| \left(z - \sum_{\vec{\delta}} \cos(\vec{k} \cdot \vec{\delta}) \right)$$

The magnon contribution to thermodynamic properties can be calculated similar to the phonon contribution to the thermodynamic properties.

Magnons

7.5

5.0

simple cubic 3-D

 $E = \varepsilon - 2t \left(\cos(k_x a) + \cos(k_y a) + \cos(k_z a) \right)$

$$\hbar \omega = 2J \left| S \right| \left(z - \sum_{\vec{\delta}} \cos(\vec{k} \cdot \vec{\delta}) \right)$$

Dispersion relation is mathematically equivalent to tight binding model for electrons.

There is a maximum frequency analogous to the Debye frequency.

Long wavelength / low temperature limit

Dispersion relation: $\hbar \omega \approx 2JSk^2a^2$

The density of states:

 $D(\omega) \propto \sqrt{\omega}$

Magnons are bosons:

$$\langle n_k \rangle = \frac{1}{\exp\left(\frac{\hbar \omega_k}{k_B T}\right) - 1}$$

$$u = \int_{0}^{\infty} \frac{\hbar \omega D(\omega) d\omega}{\exp\left(\frac{\hbar \omega_{k}}{k_{B}T}\right) - 1} \propto T^{5/2}$$

 $c_v \propto T^{3/2}$

Fig. 1. Constant-*E* scan TAS-measured spin wave dispersion relation for various directions in a single crystal of Fe at 295 K. The dashed line corresponds to the Heisenberg model with $D = 281 \text{ meV } \text{Å}^2$ and $\beta = 1.0 \text{ Å}^2$ [68 S 3], see also [73 M 1].

Magnons

Fig. 6b. Room-temperature spin wave dispersion curve for the [111] direction of ⁶⁰Ni. ZB shows the position of the zone boundary [85 M 1]. The solid curve is from calculations [85 C 1, 83 C 1].

Neutron magnetic scattering

Neutrons can scatter inelastically from magnetic material and create or annihilate magnons

$$\vec{k}_n = \vec{k}_n' + \vec{k}_{magnon} + \vec{G}$$

$$\frac{\hbar^2 k'^2}{2m_n} \pm \hbar \omega_{magnon} = \frac{\hbar^2 k^2}{2m_n} + \frac{\hbar^2 G^2}{2m_{crystal}}$$

Fig. 5.7 Schematic magnon and phonon dispersion curves. The magnon curve has been compressed by a factor of order 10 for illustrative purposes.

From: Solid State Theory, Harrison

Antiferromagnet magnons

Antiferromagnet magnons

Brillouin zone boundary is at $k = \pi/2a$

Antiferromagnet magnons

 $\hbar\omega = 4\left|J\right|S\left|\sin(ka)\right|$

Mathematically equivalent to phonons in 1-d

Student project

Make a table of magnon properties like the table of phonon properties

Magnons

Longitudinal plasma waves

There is no magnetic component of the wave.

Plasma waves can be quantized like any other wave

Electron energy loss spectroscopy

Transverse optical plasma waves

Surface Plasmons

Waves in the electron density at the boundary of two materials.

Surface plasmons have a lower frequency that bulk plasmons. This confines them to the interface.

Surface Plasmons

Green and blue require different sized particles.

High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy

PHYSICAL REVIEW B 79, 041401 R 2009

Surface plasmons on nanoparticles are efficient at scattering light.

LETTERS

Organic plasmon-emitting diode

D.M. KOLLER^{1,2}, A. HOHENAU^{1,2}, H. DITLBACHER^{1,2}, N. GALLER^{1,2}, F. REIL^{1,2}, F.R. AUSSENEGG^{1,2}, A. LEITNER^{1,2}, E.J.W. LIST^{3,4} AND J.R. KRENN^{1,2*}

¹Institute of Physics, Karl-Franzens-University, A-8010 Graz, Austria

²Erwin Schrödinger Institute for Nanoscale Research, Karl-Franzens-University, A-8010 Graz, Austria

³Christian Doppler Laboratory for Advanced Functional Materials, Institute of Solid State Physics, Graz University of Technology, A-8010 Graz, Austria ⁴NanoTecCenter Weiz Forschungsgesellschaft mbH, A-8160 Weiz, Austria

*e-mail: joachim.krenn@uni-graz.at

Published online: 28 September 2008; doi:10.1038/nphoton.2008.200

Surface plasmons are hybrid modes of longitudinal electron oscillations and light fields at the interface of a metal and a dielectric^{1,2}. Driven by advances in nanofabrication, imaging and numerical methods^{3,4}, a wide range of plasmonic elements such as waveguides^{5,6}, Bragg mirrors⁷, beamsplitters⁸, optical modulators⁹ and surface plasmon detectors¹⁰ have recently been reported. For introducing dynamic functionality to plasmonics, the rapidly growing field of organic optoelectronics¹¹ holds strong promise due to its ease of fabrication and integration opportunities. Here, we introduce an electrically switchable

Surface plasmons are used for biosensors.

Plasmon filter

http://web.pdx.edu/~larosaa/Applied_Optics_464-564/Lecture_Notes_Posted/2010_Lecture-7_ SURFACE%20PLASMON%20POLARITONS%20AT%20%20METALINSULATOR%20INTERFACES/Lecture_on_the_Web_SURFAC E-PLASMONS-POLARITONS.pdf

Polaritons

Transverse optical phonons will couple to photons with the same ω and *k*.

Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.