Polaritons, polarons,
excitons



Polaritons

Transverse optical phonons will couple to photons with the same ® and k.
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Light Bragg reflects off the sound wave; sound Bragg reflects off the light wave.



Polaritons

The dispersion relation for light
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Polaritons

Ignore the loss term Iy®
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Polaritons
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There are two solutions for
every K, one for the upper
branch and one for the lower

Polaritons are the normal modes
branch.

near the avoided crossing.

A gap exists in frequency.



w, in 104 ¢

Polaritons allow us to study the properties of
phonons using optical measurements
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By looking at the reflectance in different crystal directions, you can determine the
frequencies of the transverse optical phonons.



Polarons
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A polaron is a quasiparticle consisting of an s
electron and an ionic polarization field. The ® @ @
electron density 1s low so the screening by o © g @

electrons can be neglected.
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Electronic charge is partially screened by lattice ions. This is a charge -
phonon coupling.



Large polaron (Frohlich polaron)
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The spatial extent of the polaron is much s
larger than the lattice constant. ® @ @
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Electrons move in bands with a large effective mass (432 m, for NaCl)



Small polaron (Holstein polaron)
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Small polaron - Holstein Hamiltonian - electrons are localized and hop
(thermally activated or tunneling). Small polarons often form in organic
material. In soft materials the energy for making a distortion 1s smaller.



Bipolarons

Two polarons can bind together to form a bipolaron (a quasiparticle).
Elastic strain energy 1s reduced by sharmg the polarization field.

Bipolarons have integral spin -> they are bosons.

It 1s possible that the condensation of bipolarons mto the same ground state
could lead to superconductivity.



Bipolarons
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Figure 10, Evolution of the polypyrrole band structure upon
doping: (a) low doping level, polaron formation; (b) moderate
doping level, bipolaron formation; (¢) high (33 mol %) doping
level, formation of bipolaron bands.

J. L. Breda and G. B. Street, Acc. Chem. Res. 1985, 18, 309-315.



Excitons

Bound state of an electron and a hole in a semiconductor or insulator

Mott Wannier excitons s e ® e o o

(like positronium)




Mott-Wannier Excitons

Bound state of an electron and a hole in a semiconductor or insulator (like

positronium)

Hydrogenic model
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Table 1 Binding energy of excitons, in meV
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Excitons
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Excitons
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Phase diagram for photoexcited electrons and holes in unstressed silicon.

See: C. D. Jeffries, Electron-Hole Condensation in Semiconductors, Science 189 p. 955 (1975).



Frenkel Excitons

A Frenkel exciton 1s localized on an atom or molecule in a crystal.

The band gap of solid krypton 1s 11.7 eV. Lowest atomic transition in the solid
is 10.17 eV.

Excitons transport energy but not charge. Frenkel excitons are occur in
organic solar cells, organic light emitting diodes, and photosynthesis.



