Ferroelectricity and Piezoelectricity

Paraelectric state

Above T_c , BaTiO₃ is paraelectric. The susceptibility (and dielectric constant) diverge like a Curie-Weiss law.

$$\chi \propto \frac{1}{T - T_c} \qquad \qquad \varepsilon = (1 + \chi) \varepsilon_0$$

Antiferroelectricity

PbZrO₃

Polarization aligns antiparallel.

Associated with a structural phase transition.

Large susceptibility and dielectric constant near the transition.

Phase transition is observed in the specific heat, x-ray diffraction.

Piezoelectricity

Many piezoelectric materials are ferroelectric.

Electric field couples to polarization, polarization couples to structure.

lead zirconate titanate (Pb[Zr_xTi_{1-x}]O₃ 0<x<1) —more commonly known as PZT barium titanate (BaTiO₃) $T_c = 408$ K lead titanate (PbTiO₃) $T_c = 765$ K potassium niobate (KNbO₃) $T_c = 708$ K lithium niobate (LiNbO₃) $T_c = 1480$ K lithium tantalate (LiTaO₃) $T_c = 938$ K

quartz (SiO₂), GaAs, GaN Gallium Orthophosphate (GaPO₄) Tc = 970 K

Third rank tensor, No inversion symmetry

Piezoelectric crystal classes: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m

Piezoelectricity

When you apply a voltage across certain crystals, they get longer.

AFM's, STM's Quartz crystal oscillators Surface acoustic wave generators Pressure sensors - Epcos Fuel injectors - Bosch Inkjet printers

PZT (Pb[Zr_xTi_{1-x}]O₃ 0<x<1)

Large piezoelectric response near the rhombohedral-tetragonal transition. Electric field induces a structural phase transition.

Nitinol

The part of the metal that is under compression goes into the more compact phase.

Phase transitions

Calculate the free energy of the electrons and phonons of each phase. See which phase has the lowest energy.

Ca

Landau theory of phase transitions

A phase transition is associated with a broken symmetry.

magnetism cubic - tetragonal water - ice ferroelectric superconductivity direction of magnetization different point group translational symmetry direction of polarization gauge symmetry

Lev Landau