Landau Theory of First Order Phase Transitions

Superconductivity

First order transitions

$$f = f_0 + \alpha_0 \left(T - T_c \right) m^2 + \frac{1}{2} \beta m^4 + \frac{1}{3} \gamma m^6 + \dots \qquad \beta < 0 \qquad \gamma > 0$$

$$\frac{df}{dm} = 2\alpha_0 \left(T - T_c\right)m + 2\beta m^3 + 2\gamma m^5 = 0$$

One solution for m = 0.

- -

$$\alpha_0 \left(T - T_c \right) + \beta m^2 + \gamma m^4 = 0$$

$$m^{2} = 0, \frac{-\beta \pm \sqrt{\beta^{2} - 4\alpha_{0} \left(T - T_{c}\right) \gamma}}{2\gamma}$$

There will be a minimum at finite m as long as m^2 is real

$$T_1 = \frac{\beta^2}{4\alpha_0\gamma} + T_c$$

Jump in the order parameter

First order transitions, entropy, c_v

$$f = f_0 + \alpha_0 \left(T - T_c \right) m^2 + \frac{1}{2} \beta m^4 + \frac{1}{3} \gamma m^6 + \dots \qquad \beta < 0$$

$$m = 0, \pm \sqrt{\frac{-\beta \pm \sqrt{\beta^2 - 4\alpha_0 \left(T - T_c\right)\gamma}}{2\gamma}}$$

$$s = -\frac{\partial f}{\partial T} = \frac{\alpha_0}{2\gamma} \left(\beta - \sqrt{\beta^2 - 4\alpha_0 \gamma (T - T_c)}\right)$$

branch where the orderparameter is nonzero

$$c_{v} = T \frac{\partial s}{\partial T} = \frac{\alpha_{0}^{2} T}{\sqrt{\beta^{2} - 4\alpha_{0} \gamma (T - T_{c})}}$$

First order transitions, susceptibility

$$f = f_0 + \alpha_0 \left(T - T_c \right) m^2 + \frac{1}{2} \beta m^4 + \frac{1}{3} \gamma m^6 - mB \qquad \beta < 0$$
$$\frac{df}{dm} = 2\alpha_0 \left(T - T_c \right) m + 2\beta m^3 + 2\gamma m^5 - B = 0$$

At the minima
$$B = 2\alpha_0 (T - T_c)m + 2\beta m^3 + 2\gamma m^5$$

For small *m*,

$$\chi = \frac{dm}{dB}\Big|_{m=0} = \frac{1}{2\alpha_0 (T - T_c)}$$
 Curie - Weiss
$$\chi = \frac{dm}{dB}\Big|_{m=\sqrt{\frac{-\beta}{2\gamma}}} = \frac{1}{2\alpha_0 (T - T_1)}$$

Advanced Solid State Physics

Outline Quantization Photons Electrons Magnetic effects and Fermi surfaces Linear response Transport Crystal Physics Electron-electron interactions Quasiparticles Structural phase transitions Landau theory of second order phase transitions Superconductivity Exam guestions Appendices Lectures Books Course notes TUG students Making presentations

Landau theory of a first order phase transition

The free energy for a first order transition in Landau theory is,

$$f(T) = f_0(T) + \alpha_0 (T - T_c) m^2 + \frac{1}{2} \beta m^4 + \frac{1}{3} \gamma m^6 \qquad \alpha_0 > 0, \quad \beta < 0, \quad \gamma > 0.$$

Here $f_0(T)$ describes the temperature dependence of the high temperature phase near the phase transition.

Order parameter

Technische Universität Graz

Institute of Solid State Physics

Superconductivity

Primary characteristic: zero resistance at dc

There is a critical temperature T_c above which superconductivity disappears

About 1/3 of all metals are superconductors

Metals are usually superconductors OR magnetic, not both

Good conductors are bad superconductors

Kittel chapter 10

Superconductivity

Heike Kammerling-Onnes

Superconductivity was discovered in 1911

Critical temperature

1														2 11-			
n		0 <i>T_c</i> K										10					me
3	- 4										5	6	7	8	9	10	
Li	Be	Superconducting T _c									В	С	N	0	F	Ne	
	0.026																
11	12										13	14	15	16	17	18	
Na	Mg	Al Si P S Cl												Ar			
												1.14					
19	20	21	22	23	24	25	26	27	28	29	- 30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
			0.39	5.38							0.875	1.091					
- 37	38	39	40	41	42	43	- 44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
			0.546	9.5	0.92	7.77	0.51	0.003			0.56	3.403	3.722				
55	56	57	72	73	- 74 -	- 75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Рb	Bi	Po	At	Rn
		6	0.12	4.438	0.012	1.4	0.655	0.14			4.153	2.39	7.193				
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		

20			- 01	- 02		04					- 07		11
Ce	Pr	Nd	Pm	Sm	Eu Eu	Gd	Tb	Dy Dy	Ho	Er	Tm	Yb	Lu
													0.1
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.368	1.4												

Superconductivity

Antiaromatic molecules are unstable and highly reactive

No measurable decay in current after 2.5 years. $\rho < 10^{-25} \Omega m$.

Meissner effect

Superconductors are perfect diamagnets at low fields. B = 0 inside a bulk superconductor.

Superconductors are used for magnetic shielding.

Superconductivity

Critical temperature T_c

Critical current density J_c

Critical field H_c

Probability current

Schrödinger equation for a charged particle in an electric and magnetic field is

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}(-i\hbar\nabla - qA)^2\psi + V\psi$$

write out the
$$(-i\hbar\nabla - qA)^2\psi$$
 term

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m} \left(-\hbar^2\nabla^2 + i\hbar qA\nabla + ihq\nabla A + q^2A^2\right)\psi + V\psi$$

write the wave function in polar form

$$\psi = |\psi| e^{i\theta}$$
$$\nabla \psi = \nabla |\psi| e^{i\theta} + i\nabla \theta |\psi| e^{i\theta}$$
$$\nabla^{2} \psi = \nabla^{2} |\psi| e^{i\theta} + 2i\nabla \theta \nabla |\psi| e^{i\theta} + i\nabla^{2} \theta |\psi| e^{i\theta} - (\nabla \theta)^{2} |\psi| e^{i\theta}$$

Probability current

Schrödinger equation becomes:

$$i\hbar \frac{\partial |\psi|}{\partial t} - \hbar |\psi| \frac{\partial \theta}{\partial t} = \frac{1}{2m} \Big[-\hbar^2 \Big(\nabla^2 |\psi| + 2i\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - (\nabla \theta)^2 |\psi| \Big) \\ +i\hbar q A \Big(\nabla |\psi| + i\nabla \theta |\psi| \Big) + i\hbar q \nabla A |\psi| + q^2 A^2 |\psi| \Big] + V |\psi|$$

Real part:

$$-\hbar \left|\psi\right| \frac{\partial \theta}{\partial t} = \frac{-\hbar^2}{2m} \left(\nabla^2 - \left(\nabla \theta - \frac{q}{\hbar}\vec{A}\right)^2\right) \left|\psi\right| + V \left|\psi\right|$$

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - \left(\nabla \theta \right)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Probability current

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - (\nabla \theta)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Multiply by $|\psi|$ and rearrange $\frac{\partial}{\partial t} |\psi|^2 = 2 |\psi| \frac{\partial}{\partial t} |\psi|$
 $\frac{\partial}{\partial t} |\psi|^2 + \nabla \cdot \left[\frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right) \right] = 0$

This is a continuity equation for probability

$$\frac{\partial P}{\partial t} + \nabla \cdot \vec{S} = 0$$

The probability current:

$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

Probability current / supercurrent

The probability current:
$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

The particles are Cooper pairs q = -2e, $m = 2m_e$, $|\psi|^2 = n_{cp}$.

All superconducting electrons are in the same state so

$$\vec{j} = -2e\vec{S}$$

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

London gauge $\nabla \theta = 0$

$$\vec{j} = \frac{-2n_{cp}e^2}{m_e}\vec{A} = \frac{-n_se^2}{m_e}\vec{A}$$
 $n_s = 2n_{cp}$

1st London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$
$$\frac{d\vec{j}}{dt} = \frac{-n_s e^2}{m_e} \frac{d\vec{A}}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

$$\frac{d\vec{A}}{dt} = -\vec{E}$$

First London equation:

$$\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

Classical derivation:
$$-e\vec{E} = m\frac{d\vec{v}}{dt} = -\frac{m}{n_s e}\frac{d\vec{j}}{dt}$$

 $\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e}\vec{E}$

2nd London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \nabla \times \vec{A}$$

Second London equation:

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B}$$

Meissner effect

Combine second London equation with Ampere's law

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B} \qquad \nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \times \nabla \times \vec{B} = \frac{-n_s e^2 \mu_0}{m_e} \vec{B}$$
$$\nabla \times \nabla \times \vec{B} = \nabla \left(\nabla \cdot \vec{B}\right) - \nabla^2 \vec{B}$$

Helmholtz equation: $\lambda^2 \nabla^2 \vec{B} = \vec{B}$

London penetration depth:

$$\lambda = \sqrt{\frac{n_s e^2 \mu_0}{m_e}}$$

Meissner effect

$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
 $\vec{j} = \frac{\vec{B}_0}{\mu_0 \lambda} \exp\left(\frac{-x}{\lambda}\right) \hat{y}$

Flux quantization

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

For a ring much thicker than the penetration depth, j = 0 along the dotted path.

$$0 = \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

Integrate once along the dotted path.

$$\oint \nabla \theta \cdot d\vec{l} = -\frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{l} = -\frac{2e}{\hbar} \int_{S} \nabla \times \vec{A} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s}$$

magnetic flux

Stokes' theorem

Flux quantization

Superconducting flux quantum