Magnetism

low frequency metal / high frequency insulator

Conducting transparent contacts for LEDs and Solar cells

 $\omega_p^2 \approx \frac{ne^2}{\varepsilon_0 m}$

Windows that reflect infrared

Reflection of radio waves from ionosphere

Intraband transitions

When the bands are parallel, there is a peak in the absorption (ϵ ")

Dielectric function of Cu, Ag, and Au obtained from reflection electron energy loss spectra, optical measurements, and density functional theory

Technische Universität Graz

Institute of Solid State Physics

Magnetism

diamagnetism paramagnetism ferromagnetism (Fe, Ni, Co) ferrimagnetism (Magneteisenstein) antiferromagnetism helimagnetism superparamagnetism spin glass

$$H = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{A} \frac{\hbar^{2}}{2m_{A}} \nabla_{A}^{2} - \sum_{i,A} \frac{Z_{A}e^{2}}{4\pi\varepsilon_{0}r_{iA}} + \sum_{i$$

Coulomb interactions cause ferromagnetism not magnetic interactions.

Technische Universität Graz

Magnetism

 χ is typically small (10⁻⁵) so $B \approx \mu_0 H$

Diamagnetism

A free electron in a magnetic field will travel in a circle

The magnetic created by the current loop is opposite the applied field.

Dissipationless currents are induced in a diamagnet that generate a field that opposes an applied magnetic field.

Current flow without dissipation is a quantum effect. There are no lower lying states to scatter into. This creates a current that generates a field that opposes the applied field.

 $\chi = -1$ superconductor (perfect diamagnet)

 $\chi \sim -10^{-6}$ - 10⁻⁵ normal materials

Diamagnetism is always present but is often overshadowed by some other magnetic effect.

Levitating diamagnets

Levitating pyrolytic carbon

NOT: Lenz's law $V = -\frac{d\Phi}{dt}$

Levitating frogs

χ for water is -9.05 \times 10⁻⁶

16 Tesla magnet at the Nijmegen High Field Magnet Laboratory http://www.hfml.ru.nl/froglev.html

Andre Geim

2000 Ig Nobel Prize for levitating a frog with a magnet

A

The Nobel Prize in Physics 2010 Andre Geim, Konstantin Novoselov

The Nobel Prize in Physics 2010			
Nobel Prize Award Ceremony			
Andre Geim			
E	Biographical	Interview	
	Nobel Lecture	Nobel Diploma	
	Banquet Speech	Photo Gallery	
		Other Resources	

Konstantin Novoselov

Andre Geim

Born: 1958, Sochi, Russia

Affiliation at the time of the award: University of Manchester, Manchester, United Kingdom

Prize motivation: "for groundbreaking experiments regarding the two-dimensional material graphene"

Diamagnetism

A dissipationless current is induced by a magnetic field that opposes the applied field.

 $\vec{M} = \chi \vec{H}$

Diamagnetic susceptibility

Copper	-9.8×10 ⁻⁶
Diamond	-2.2×10 ⁻⁵
Gold	-3.6×10 ⁻⁵
Lead	-1.7×10 ⁻⁵
Nitrogen	-5.0×10 ⁻⁹
Silicon	-4.2×10 ⁻⁶
water	-9.0×10 ⁻⁶
bismuth	-1.6×10 ⁻⁴

Most stable molecules have a closed shell configuration and are diamagnetic.

Materials that have a magnetic moment are paramagnetic.

An applied field aligns the magnetic moments in the material making the field in the material larger than the applied field.

The internal field is zero at zero applied field (random magnetic moments).

 $\vec{M} = \chi \vec{H}$

Paramagnetic susceptibility

Aluminum	2.3×10 ⁻⁵
Calcium	1.9×10^{-5}
Magnesium	1.2×10^{-5}
Oxygen	2.1×10 ⁻⁶
Platinum	2.9×10 ⁻⁴
Tungsten	6.8×10 ⁻⁵

Boltzmann factors

To take the average value of quantity A

$$\langle A \rangle = rac{\sum_{i} A_{i} e^{-E_{i}/k_{B}T}}{\sum_{i} e^{-E_{i}/k_{B}T}}$$

Spin populations

Paramagnetism, spin 1/2

