Linear response
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Causality and the Kramers-Kronig relations (1)

7(w) = j g(zr)e " "dr = j E(r)cos(wr)dr — ijO(r)sin(m)dr = 7' (0)+iy" (o)
The real and imaginary parts of the susceptibility are related.

If you know ', inverse Fourier transform to find E(t). Knowing E(t) you
can determine O(t) = sgn(t)E(t). Fourier transform O(t) to find y".

X (w) = /E{t)cos(wt)dt E(t) = % f)({w) cos(wt)dw




Causality and the Kramers-Kronig relation (11)

Real space Reciprocal space

V@) =—Lp | 2@y,

E(t) =sgn(t)O(t) Tooc o' —w
O() = sgn(DE () - Lp | 2@y,
T @' — o

—0o0

L ey =y I

Tw Tw

Take the Fourier transform, use the convolution theorem.

P: Cauchy principle value (go around the singularity and
take the limit as you pass by arbitrarily close)

Singularity makes a numerical evaluation more difficult.

http://lamp.tu-graz.ac.at/~hadley/ss2/linearresponse/causality.php



Kramers-Kronig relations (I11)
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7' ()= y'(-~o) Real part is even
Imaginary part 1s odd
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Kramers-Kronig relations (I11)
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Singularity 1s stronger in this form. I
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Kramers-Kronig relations
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If you know any of these for just positive frequencies,
you can calculate all the others.

https://en.wikipedia.org/wiki/Kramers%E2%80%93Kronig_relations
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Impulse response/generalized susceptibility

The impulse response function is the response of the system to a
o-function excitation. The response function must be zero before
the excitation.

The generalized susceptibility 1s the Fourier transform of the
impulse response function.

Any function that is zero before the excitation and nonzero
afterwards must have both an odd component and an even
component.

The generalized susceptibility must have a real and 1imaginary
part. All information about the real part 1s contained in the
imaginary part and vice versa.



Fluctuation-dissipation theorem

The fluctuation-dissipation theorem relates the size of the
fluctuations to the dissipation in a system.

Most of the dissipation in a resonant system occurs at
frequencies near the resonance.

http://en.wikipedia.org/wiki/Fluctuation dissipation theorem



Fluctuation-dissipation theorem

Brownian motion: The response to thermal noise 1s related to the
viscosity.
dv

m— =
dt

Johnson noise: The voltage fluctuations are related to the resistance.

— LV D = puk,T

V... =4k, TRB

The fluctuation-dissipation theorem holds at equilibrium (where the
equations are linear to a good approximation).

http://en.wikipedia.org/wiki/Fluctuation_dissipation theorem



Dielectric response of insulators

The electric polarization is related to the
electric field

P :5oZijEj

The electric displacement vector D is also related
to the electric field

D, =P +¢,E, :50(1+Zij)Ej :gogijEj

Eij = (1+Zij)

E 1s decreased by
a factor of the
dielectric
constant

L



Dielectric response of insulators

In an insulator, charge is bound. The response to an electric field can be modeled
as a collection of damped harmonic oscillators

P = nex

: L /< ex = dipole moment
Macroscopic polarization

density

The core electrons of a metal respond to an electric field like this too.



Dielectric response of insulators

The differential equation that describes how the position of the charge
changes in time is:

2
md ;(+bdx+kx:—eE(t)
dt dt

The impulse response function is:

g(t)=—leXp(_—btjsin{\/4mk_b2 t) t>0

b 2m 2m




Electric susceptibility

P =¢.1eE P = ngx
P ngx
Xe = = !
sE  gE

Assume a solution of the form X(w)e'®!, E(w)e'
. d’x
dt’

dx
+b—+kx=qE(t
k=)

d?z
dt?

_aE
m

dw ‘
—|—"}’d—:—|—wé$:



Electric susceptibility
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Resonance of a damped driven harmonic oscillator
Imiz)

m =4 [kg]

b =1 [N s/m]
k =6 [N/m]
Fy =0.9 [N]
w =08 [rad/s]

. wp= /% — % =122 [rad/s] = 0.194 [Hz]
z)

1

/ | 6 = atan( 2 ) =0.228 [rad] = 13.1 [deg]
B
Al = =0.255
| Al r—{k FETERETE =0.255 [m]

Q=Y _490
Display Fye™*: Display |A|.€:":':“FI 9).
Dhsplay transients z: Dhsplay x2:

http://lamp.tu-graz.ac.at/~hadley/physikm/apps/resonance.en.php
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There can be more resonances.



Real part of dielectric function

Dielectric function of insulators
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Insulators can often be modeled as a simple resonance.



Dispersion relation

In the section on photons, we derived the wave equation for light in vacuum.
Here the wave equation for light in a dielectric material 1s derived.

VXE:—@ VXH:a—D
ot ot
D=¢E gzyﬁ 1
. oH
VxE=—u——70
“ ot
Take the curl VxVxE=—pu 6Va>; H ® 1
0 C—
2
V}%)—Vzé =—Uu 8 E) \/grgO/urluo
ot
0°D
Erbobly by~ =V D K

The normal mode solutions are plane waves: D = D, exp(k - F — wt)

g(w,K)u,e,0° =k’




Dispersion relation

(@) p,e,0° =k*
If € 1s real and positive: propagating electromagnetic waves exp (i (IZ T — ot ))
If €<0 : decaying solutions exp(—k -F —imt)

If & is complex, €> 0 : decaying electromagnetic waves exp (i (|Z F— a)t))exp(— KT)

Il Re

12 ’fw /(Do 8(-?;)




Dielectric function

. . . 2 2
Dispersion relation: &, u,e,0° =K NERO,
kK =.\/& 1,e,0 =
C

Measurable: V€& =N+ 1K
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The index of refraction n and the extinction coefficient K
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Refractive index »n
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http://en.wikipedia.org/wiki/Dispersion_%28optics%29#mediaviewer/File:Prism rainbow_schema.pn

http://en.wikipedia.org/wiki/Refractive index



I = 1Ijexp(—ax)
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Dielectric function of silicon Vé(@) =n(@)+iK(w)
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Optical properties of insulators and semiconductors
In an insulator, all charges are bound. By applying an electric field, the electrons and ionz can be pulled out of ther equilibrium poestions. When this electric field is
turned off, the charges oscillate as they return to their equilibrium positions. & simple model for an insulator can be constructed by describing the motion of the charge

as a damped masz-spring system. The differential equation that describes the motion of a charge 1z,

T

dz dz .
s b + kr = —qE.

Eewnting above equation using wg = \ﬁ and the damping constant v = % wields,

qE

moC

dz Y £

pad o —
T ) GF T W T =

Ifthe electnc field 15 pulsed on, the response of the charges 12 described by the impulse response function g(t). The impulse response finction satsfies the equation,

1
g de a4 s
] I dt 0 mo M

The zclution to this equation 15 zero before the electric field 15 pulzed on and at the time of the pulse the charges suddenly start ozcillating wath the fequency

Wy = \.-"'I‘*"g — % . The amplitude of the oscillation decays exponentially to zero in a charactenistic titme %

q
Mty

g(t) = — exp(— %1‘.} sin(w1t).
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Dielectrics

Dielectrics used as electrical insulators should not conduct.
Large breakdown field.

Low AC losses.

Sometimes a low dielectric constant is desired (CMOS
interconnects)

Sometimes a high dielectric constant is desired (supercapacitors).



Breakdown field

Typically 10°-10% V/cm
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AC losses - loss tangent

In an ideal capacitor, current leads voltage by 90°.

Because the dielectric constant i1s complex, in real materials current
leads voltage by 90° - 5.

2
weV,

Power loss = tan o

Becomes more of an issue at high frequencies (microwaves)

I Re
H Im




Loss tangent

Dielectric Dielectric - Max
Substance Constant Strength 0ss Temp
_ _ ~ Tangent
{relative to air) (¥ S mil) {°F)
ABS (plastic), Molded 20-35 400 - 13530 0.00500 -0.0190 |171 - 228
Al 1.000%4 30 -70
Alumina - 96% 10,0 0.0002 @ 1 GHz
-99.5% 9.6 0.0002 @ 100 MHz
0.0003 @ 10 GH=
Alurminum Silicate 5.3-55
Bakelite 3.7
Bakelite (mica filled) 4.7 325 - 375
137 @ 1 MHz 0.012 @ 1 MHz
Balsa wood 1.22 @ 3 GHz 0.100 @ 3 GHz
2.53 @ 1 MHz 0.0092 @ 1 MHz
Beaswar (yellow) 2,30 @ 3 GHz 0.0075 @ 3 GHz
Beryllium oxide 6.7 0.006 @ 10 GHz
2.35 @ 1 MHz 0.001 @ 1 MHz
Butyl Rubber 2.35 @ 3 GHz 0.0009 @ 3 GHz
’ 2,17 @ 1 MHz =0.0004 @ 1 MHz
Carbon Tetrachloride 217 @ 3 GHz 0.0004 @ 3 GHz
Diarmond 5.5 -10
Delrin {acetyl resin) 3.7 500 1280
Diouglas Fir 1.9 @ 1 MH=z 0.023 @ 1 MHz
- 193 @ 1 MHz 0.026 @ 1 MH=
Douglas Fir Plywood 1.82 @ 3 GHz 0.027 @ 3 GHz
Enamel 5.1 450
Epoxy glass PCR 5.2 700
245 @ 1 MHz 0.09 @ 1 MHz
Ethyl &lcohaol (absolute) 65 @ 2 GHz 025 @ 3 GH=
41 @ 1 MHz -0.03 @ 1 MHz
Ethylene Glycol 12 @ 3 GH= 1@ 3 GHz
Formica == 4.00
FR-4 (G-107 - low resin 4.9 0.008 @ 100 MHz
- high resin 4.2 0,008 @ 3 GHz
0.0002 @ 100 MHz
Fused guartz 3.8 0.00006 @ 3 GHz
Fused silica (glass) 3.8
Gallium &rsenide (Gads) 13.1 0.0016 @ 10 GHz
Germanium 16
Slass 4-10
Glass (Corning 7059) 5.75 000236 @ 10 GHz
Gutta-percha 2.6
Halow ax oil 4.8
High Density Polyethylene (HOPE], 0.0000400 -
Molded 1.0-5.0 475 - 3810 0.00100 1538 - 248
L 4,15 @ 1 MHz 0.12 @ 1 MHz
Ice (pure distilled water) 32 @ 3 GHz 0.0009 @ 3 GHz
Kapton® Type 100 2.9 7400 S00
Type 150 2.9 4400

http://www.rfcafe.com/references/electrical/dielectric-constants-strengths.htm



Polarizability

* Orientation polarizability

Overdamped modes * Space charge polarizability

* Jonic polarizability

Underdamped modes * Electronic polarizability



Orientation (dipolar) Polarizability

For materials (gases, liquids, solids) with a permanent dipole moment.

The theory 1s very similar to paramagnetism.

R
S A

VA ? Curie law



Orientation Polarizability

[on jumps.

doubly ionized



