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Band structure in 1-D

Consider an electron moving in a periodic potential V' (z). The period of the potential is @, V(z + a) = V(z). The Schrédinger equation for
this case is,

Quantum mechanically, the electron moves as a wave through the potential. Due to the diffraction of these waves, there are bands of energies
where the electron is allowed to propagate through the potential and bands of energies where no propagating solutions are possible. The Bloch
theorem states that the propagating states have the form,

P = eFuy(z).
where k is the wavenumber and uy(x) is a periodic function with periodicity a.

The solutions to the Schrédinger equation for a 1-D periodic potential can be calculated numerically. The following form can be used to
calculate the dispersion relation between F and k for any one dimensional potential. Input the periodic potential V() in the interval between 0
and a.

The density of states is,

2 dk
D(E) =2 aE
and the group velocity is,
1 dE
T Rdk

http://lampx.tugraz.at/~hadley/ss1/bloch/bloch.php



Photoemission spectroscopy
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https://arpes.stanford.edu/research/tool-development/angle-resolved-photoemission-spectroscopy

Angle resolved photoemission spectroscopy (ARPES)
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Measure the dispersion relation with angle resolved photoemission

http://server2.phys.uniromal .it/gr/lotus/Instrumentation] M.htm



Inverse photoemission spectroscopy (IPES)
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http://iopscience.iop.org/0034-4885/51/9/003



k-resolved Inverse Photoemission Spectroscopy (KRIPES)

Electron energy (eV)

Figure 9. Band calculations and data for bulk direct transitions in the two principal azimuths
'™ and I'X and Cu(001). Upper panel shows the Fermi surface and isochromat curves
at hw =9.7 ¢V for transitions into band 6. Lower panel shows the corresponding E(k;)
projections. Computations and filled data circles are from Woodruff et al (1982); open
circles are data from Jacob et al (1986).

http://iopscience.iop.org/0034-4885/51/9/003
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Fig. 28. Cu(100). Angle-resolved photoelectron spectra
taken at different polar angles 6 along the '’XUL bulk
mirror plane. Photon energy hv = 21.2 eV, sample
temperature 7' = 50 K [93M1]. For further data taken at
room temperature see [79H1]. For data taken with
linear-polarized photons at hv = 40° see [83G].
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Conduction band minimum

Free electron dispersion relation
—

Minimum of the conduction band

Near the conduction band minimum, the bands are approximately
parabolic.



Effective mass

The parabola at the bottom of the conduction band does not
have the same curvature as the free-electron dispersion
relation. We define an effective mass to characterize the
conduction band minimum.

.
- d’E(K)
dk:

m

This effective mass 1s used to describe the response of
electrons to external forces in the particle picture.



Top of the valence band

In the valence band, the effective mass 1s negative.

E

-

Charge carriers in the valence band are
positively charged holes.

m*, = effective mass of holes

hZ

* _h2
m, = =
" d’EK)
dk’



Holes

A completely filled band does not contribute to the current.

j= [ -ev(®)DK)f(K)K

= [ —vDE) F )k [ -ev(k)D(K)f (K)dk
band empty states

= [ ev)DK) T (k)dk

empty states

Holes have a positive charge and a positive mass.



Holes

Albert Einstein Erwin Schrodinger Paul Adrien Maurice Dirac



