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Organic solar cells
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P3HT donor

PCBM acceptor

Excitons in polymers: a monomer is in an excited states and this moves down
the chain.

https://www.uni-ulm.de/nawi/nawi-oc2/forschung/ag-organische-halbleiter-und-farbstoffe-fuer-die-photovoltaik.html?print=1



Perovskite solar cells
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Efficiency ~ 22%

https://en.wikipedia.org/wiki/Perovskite solar cell



Polarons
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A polaron is a quasiparticle consisting of an s
electron and an ionic polarization field. The ® @ @
electron density 1s low so the screening by o © g @

electrons can be neglected.
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Electronic charge is partially screened by lattice ions. This is a charge -
phonon coupling.



Large polaron (Frohlich polaron)
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The spatial extent of the polaron is much s
larger than the lattice constant. ® @ @
. g @ o 9
Large polarons typically form bands. @5 ® o

L2

Electrons move in bands with a large effective mass (432 m, for NaCl)



Small polaron (Holstein polaron)
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Small polaron - Holstein Hamiltonian - electrons are localized and hop
(thermally activated or tunneling). Small polarons often form in organic
material. In soft materials the energy for making a distortion 1s smaller.



Bipolarons

Two polarons can bind together to form a bipolaron (a quasiparticle).
Elastic strain energy 1s reduced by sharmg the polarization field.

Bipolarons have integral spin -> they are bosons.

It 1s possible that the condensation of bipolarons mto the same ground state
could lead to superconductivity.



Bipolarons
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Figure 10, Evolution of the polypyrrole band structure upon
doping: (a) low doping level, polaron formation; (b) moderate
doping level, bipolaron formation; (¢) high (33 mol %) doping
level, formation of bipolaron bands.

J. L. Breda and G. B. Street, Acc. Chem. Res. 1985, 18, 309-315.



Landau theory of a Fermi liquid

If there are no electron-electron interactions, electrons have an infinite lifetime
and the probability that a state is occupied i1s given by the Fermi function.

If there are interactions, quasiparticles have a finite lifetime. The lifetime can be
calculated by Fermi's golden rule.

The occupation probability of a state depends on the occupation the other states.
You solve for the probability distribution by solving a master equation. The
occupation probability is not given by the Fermi function.

2
PN :77[ <‘//k | H |Wk’>‘2 5(Ek B Ek')



Landau theory of a Fermi liquid

The free electron model = 'Fermi gas' is very successful at describing metals but
it 1s not clear why this is so since electron-electron interactions are completely
ignored.

Landau first considered the "normal modes" of an interacting electron system.
The low lying excitations he called quasiparticles.

The quasiparticles have as many degrees of freedom as the electrons. They can
be labeled by k.

Quasiparticles can be have the same spin, charge, and k vectors as the electrons.
It is not easy to calculate E(K).

Concepts like the density of states refer to quasiparticles.



Antiferromagnetic Mott insulator

Instabilities Fermi liguid

Some metals cannot be described as a Fermi liquid.

Pseudogapped metal
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Heavy Fermion CeCu,Si,

Some metals cannot be described as a Fermi liquid.
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http://www.ipap.jp/jpsj/announcement/announce2007May.htm
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Cuprate superconductors
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Iron based superconductors

Ba(Fe, Co,),As,
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Metal -Insulator
Transitions
Electron - Electron
Interactions



Electron-electron interactions

Including electron-electron interactions into the description of
solids 1s very, very difficult.
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One of the simplest approximation 1s to say that the electron-
electron interactions screen the nuclei-electron interactions.

Screening = Abschirmung



Electron screening (Abschirmung)
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Thomas-Fermi screening
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Electron screening
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Screening length depends on the electron density



Friedel oscillations

Only wave vectors k < ke can contribute to the screening
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Around a point defect

Friedel oscillations or Rudermann-Kittel oscillations



http://www.almaden.ibm.com/vi
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Direct Observation of Friedel Oscillations around Incorporated Sig, Dopants in GaAs
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Metal-insulator transition

Atoms far apart: insulator

Atoms close together: metal
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Mott transition

The number of bound states in a finite
potential well depends on the width of the
well. There is a critical width below which
the valence electrons are no longer bound.



Mott transition
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For low electron densities the screening is weak. The electrons are bound and
the material is an insulator.

For high electron densities the screening is strong, the valence electrons are
not bound and the material is a metal. The 1s state of a screened Coulomb
potential becomes unbound at k, = 1.19/a,,.



Mott transition (low electron density)

There are bound state solutions to the 0> 2
unscreened potential (hydrogen atom)
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Mott argued that the transition should be sharp. kS = a—
0

High-temperature oxide superconductors /

o antiferromagnets
Nevill Francis Mott

Nobel prize 1977



