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Fluctuation-dissipation theorem

Brownian motion: The response to thermal noise 1s related to the
viscosity.
dv

m— =
dt

Johnson noise: The voltage fluctuations are related to the resistance.

— LV D = puk,T

V... =4k, TRB

The fluctuation-dissipation theorem holds at equilibrium (where the
equations are linear to a good approximation).

http://en.wikipedia.org/wiki/Fluctuation_dissipation theorem



Dielectric response of insulators

The electric polarization is related to the
electric field

P :5oZijEj

The electric displacement vector D is also related
to the electric field

D, =P +¢,E, :50(1+Zij)Ej :gogijEj

Eij = (1+Zij)

E 1s decreased by
a factor of the
dielectric
constant

L



Dielectric response of insulators

In an insulator, charge is bound. The response to an electric field can be modeled
as a collection of damped harmonic oscillators

P = nex

: L /< ex = dipole moment
Macroscopic polarization

density

The core electrons of a metal respond to an electric field like this too.



Dielectric response of insulators

The differential equation that describes how the position of the charge
changes in time is:

2
md ;(+bdx+kx:—eE(t)
dt dt

The impulse response function is:

g(t)=—leXp(_—btjsin{\/4mk_b2 t) t>0
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Electric susceptibility

Xe = = response/drive




Electric susceptibility

d?z
dt?
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Electric susceptibility
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Resonance of a damped driven harmonic oscillator
Imiz)

m =4 [kg]

b =1 [N s/m]
k =6 [N/m]
Fy =0.9 [N]
w =08 [rad/s]

. wp= /% — % =122 [rad/s] = 0.194 [Hz]
z)

1

/ | 6 = atan( 2 ) =0.228 [rad] = 13.1 [deg]
B
Al = =0.255
| Al r—{k FETERETE =0.255 [m]

Q=Y _490
Display Fye™*: Display |A|.€:":':“FI 9).
Dhsplay transients z: Dhsplay x2:

http://lamp.tu-graz.ac.at/~hadley/physikm/apps/resonance.en.php



Dielectric function
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Real part of dielectric function

Dielectric function of insulators
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Insulators can often be modeled as a simple resonance.



Dispersion relation

Maxwell equations in matter > Wave equation.

Take the curl

The normal mode solutions are plane waves:
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Dispersion relation

(@) p,e,0° =k*
If € 1s real and positive: propagating electromagnetic waves exp (i (IZ T — ot ))
If €<0 : decaying solutions exp(—k -F —imt)

If & is complex, €> 0 : decaying electromagnetic waves exp (i (|Z F— a)t))exp(— KT)
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Dielectric function
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Measurable: V€& =N+ 1K
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The index of refraction n and the extinction coefficient K
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Refractive index »n
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http://en.wikipedia.org/wiki/Dispersion_%28optics%29#mediaviewer/File:Prism rainbow_schema.pn

http://en.wikipedia.org/wiki/Refractive index



I = 1Ijexp(—ax)
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Dielectric function of silicon Vé(@) =n(@)+iK(w)
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Optical properties of insulators and semiconductors
In an insulator, all charges are bound. By applying an electric field, the electrons and ionz can be pulled out of ther equilibrium poestions. When this electric field is
turned off, the charges oscillate as they return to their equilibrium positions. & simple model for an insulator can be constructed by describing the motion of the charge

as a damped masz-spring system. The differential equation that describes the motion of a charge 1z,

T

dz dz .
s b + kr = —qE.

Eewnting above equation using wg = \ﬁ and the damping constant v = % wields,

qE
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Ifthe electnc field 15 pulsed on, the response of the charges 12 described by the impulse response function g(t). The impulse response finction satsfies the equation,

1
g de a4 s
] I dt 0 mo M

The zclution to this equation 15 zero before the electric field 15 pulzed on and at the time of the pulse the charges suddenly start ozcillating wath the fequency

Wy = \.-"'I‘*"g — % . The amplitude of the oscillation decays exponentially to zero in a charactenistic titme %
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g(t) = — exp(— %1‘.} sin(w1t).
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