

Technische Universität Graz

Institute of Solid State Physics

15. Magnetism/ Superconductivity

Nov 25, 2019

Bloch wall

Anisotropy energy depends on the number of spins pointing in the hard direction

Soft magnetic materials

$$B = \mu_0 \left(H + M \right)$$

$$M = \chi H$$

 $\mu_r = 1 + \chi$

Hard magnetic materials

ferrites can also be hard magnets

Defects are introduced to pin the Bloch walls in a hard magnet.

-B

Small 10 - 100 nm particles have single domains.

Elongated particles have the magnetization along the long \underline{M}

Single domains are used for magnetic recording. Long crystals can be magnetized in either of the two directions along the long axis.

Shape anisotropy.

Hard magnets

Grains too small to contain Bloch walls must be flipped entirely by the field. Alnico: 8-12% Al, 15-26% Ni, 5-24% Co, up to 6% Cu, up to 1% Ti, rest is Fe

Applications of hard magnets

Motors, generators, speakers, microphone

Giant magnetoresistance

GMR sensors in read-heads for hard-disk drives

Shipment of GMR-read-heads (1997-2007): 5 billion (10⁹)

Peter Gruenberg Nobel Lecture 2007: From Spinwaves to Giant Magnetoresistance (GMR) and Beyond

Technische Universität Graz

Institute of Solid State Physics

Superconductivity

Primary characteristic: zero resistance at dc

There is a critical temperature T_c above which superconductivity disappears

About 1/3 of all metals are superconductors

Metals are usually superconductors OR magnetic, not both

Good conductors are bad superconductors

Kittel chapter 10

Heike Kammerling-Onnes

Superconductivity was discovered in 1911

Nobel Lecture 1913

Heike Kammerling-Onnes

Superconductivity was discovered in 1911

Nobel Lecture 1913

Critical temperature

1																	2 11-
n		0 <i>T_c</i> K									10					me	
3	- 4	5 6 7 8 9									9	10					
Li	Be		Superconducting T _c								В	С	N	0	F	Ne	
	0.026																
11	12	13 14 15									16	17	18				
Na	Mg											Al	Si	Р	S	Cl	Ar
												1.14					
19	20	21	22	23	24	25	26	27	28	29	- 30	- 31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
			0.39	5.38							0.875	1.091					
- 37	38	39	40	41	42	43	- 44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
			0.546	9.5	0.92	7.77	0.51	0.003			0.56	3.403	3.722				
55	56	57	72	73	- 74 -	- 75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Рb	Bi	Po	At	Rn
		6	0.12	4.438	0.012	1.4	0.655	0.14			4.153	2.39	7.193				
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		

20			- 01	- 02		04					- 07		11
Ce	Pr	Nd	Pm	Sm	Eu Eu	Gd	Tb	Dy Dy	Ho	Er	Tm	Yb	Lu
													0.1
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.368	1.4												

Antiaromatic molecules are unstable and highly reactive

No measurable decay in current after 2.5 years. $\rho < 10^{-25} \Omega m$.

Meissner effect

Superconductors are perfect diamagnets at low fields. B = 0 inside a bulk superconductor.

Superconductors are used for magnetic shielding.

Critical temperature T_c

Critical current density J_c

Critical field H_c

Polymere hochdotierte Halbleiter

http://www.wmi.badw.de/teaching/Lecturenotes/index.html

Compound	T _c , in K	Compound	T_{c} in l
Nb ₃ Sn Nb ₃ Ge Nb ₃ Al NbN	$ 18.05 \\ 23.2 \\ 17.5 \\ 16.0 \\ 19.2 $	V_3Ga V_3Si $YBa_2Cu_3O_{6.9}$ Rb_2CsC_{60} MgB_2	16.5 17.1 90.0 31.3 39.0

*

æ

$\mathrm{BaPb}_{0.75}\mathrm{Bi}_{0.25}\mathrm{O}_3$	$T_{c} = 12 \text{ K}$	[BPBO
$La_{1.85}Ba_{0.15}CuO_4$	$T_{c} = 36 \text{ K}$	[LBCO
$YBa_2Cu_3O_7$	$T_{c} = 90 \text{ K}$	[YBCO
$Tl_2Ba_2Ca_2Cu_3O_{10}$	$T_{c} = 120 \text{ K}$	[TBCO
$Hg_{0.8}Tl_{0.2}Ba_2Ca_2Cu_3O_{8.33}$	$T_c = 138 \text{ K}$	-
$(Sn_5In)Ba_4Ca_2Cu_{10}O_y$	$T_c = 212 \text{ K}$	

Critical temperature T_c

Critical current density J_c

Critical field H_c

Perfect diamagnetism

Jump in the specific heat like a 2nd order phase transition, not a structural transition

Superconductors are good electrical conductors but poor thermal conductors, electrons no longer conduct heat

There is a dramatic decrease of acoustic attenuation at the phase transition, no electron-phonon scattering

Dissipationless currents - quantum effect

Electrons condense into a single quantum state - low entropy.

Electron decrease their energy by Δ but loose their entropy.

Probability current

Schrödinger equation for a charged particle in an electric and magnetic field is

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}(-i\hbar\nabla - qA)^2\psi + V\psi$$

write out the
$$(-i\hbar\nabla - qA)^2\psi$$
 term

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m} \left(-\hbar^2\nabla^2 + i\hbar qA\nabla + ihq\nabla A + q^2A^2\right)\psi + V\psi$$

write the wave function in polar form

$$\psi = |\psi| e^{i\theta}$$
$$\nabla \psi = \nabla |\psi| e^{i\theta} + i\nabla \theta |\psi| e^{i\theta}$$
$$\nabla^{2} \psi = \nabla^{2} |\psi| e^{i\theta} + 2i\nabla \theta \nabla |\psi| e^{i\theta} + i\nabla^{2} \theta |\psi| e^{i\theta} - (\nabla \theta)^{2} |\psi| e^{i\theta}$$

Probability current

Schrödinger equation becomes:

$$i\hbar \frac{\partial |\psi|}{\partial t} - \hbar |\psi| \frac{\partial \theta}{\partial t} = \frac{1}{2m} \Big[-\hbar^2 \Big(\nabla^2 |\psi| + 2i\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - (\nabla \theta)^2 |\psi| \Big) \\ +i\hbar q A \Big(\nabla |\psi| + i\nabla \theta |\psi| \Big) + i\hbar q \nabla A |\psi| + q^2 A^2 |\psi| \Big] + V |\psi|$$

Real part:

$$-\hbar \left|\psi\right| \frac{\partial \theta}{\partial t} = \frac{-\hbar^2}{2m} \left(\nabla^2 - \left(\nabla \theta - \frac{q}{\hbar}\vec{A}\right)^2\right) \left|\psi\right| + V \left|\psi\right|$$

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - \left(\nabla \theta \right)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Probability current

Imaginary part:

$$\hbar \frac{\partial |\psi|}{\partial t} = \frac{1}{2m} \left[-\hbar^2 \left(2\nabla \theta \nabla |\psi| + i\nabla^2 \theta |\psi| - \left(\nabla \theta \right)^2 |\psi| \right) + 2\hbar q A \nabla |\psi| + \hbar q |\psi| \nabla A \right]$$

Multiply by $|\psi|$ and rearrange

$$\frac{\partial}{\partial t} |\psi|^2 + \nabla \cdot \left[\frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A}\right)\right] = 0$$

This is a continuity equation for probability

$$\frac{\partial P}{\partial t} + \nabla \cdot \vec{S} = 0$$

The probability current:

$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

Probability current / supercurrent

The probability current:
$$\vec{S} = \frac{\hbar}{m} |\psi|^2 \left(\nabla \theta - \frac{q}{\hbar} \vec{A} \right)$$

This result holds for all charged particles in a magnetic field.

In superconductivity the particles are Cooper pairs q = -2e, $m = 2m_e$, $|\psi|^2 = n_{cp}$.

All superconducting electrons are in the same state so

$$\vec{j} = -2en_{cp}\vec{S}$$
$$\vec{j} = \frac{-e\hbar n_{cp}}{I} \left(\nabla \theta + \frac{2e}{I}\vec{A}\right)$$

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

London gauge $\nabla \theta = 0$

$$\vec{j} = \frac{-2n_{cp}e^2}{m_e}\vec{A} = \frac{-n_se^2}{m_e}\vec{A}$$
 $n_s = 2n_{cp}$

1st London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$

 $\frac{d\vec{j}}{dt} = \frac{-n_s e^2}{m_e} \frac{d\vec{A}}{dt} = \frac{n_s e^2}{m_e} \vec{E} \qquad \qquad \frac{d\vec{A}}{dt} = -\vec{E}$

First London equation:

$$\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

Classical derivation:
$$-e\vec{E} = m\frac{d\vec{v}}{dt} = -\frac{m}{n_s e}\frac{d\vec{j}}{dt}$$

 $\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e}\vec{E}$

Heinz & Fritz

2nd London equation

$$\vec{j} = \frac{-n_s e^2}{m_e} \vec{A}$$

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \nabla \times \vec{A}$$

Second London equation:

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B}$$