

Technische Universität Graz

Institute of Solid State Physics

16. Superconductivity

Nov 28, 2019

Institute of Solid State Physics

Technische Universität Graz

BCS theory (1957)

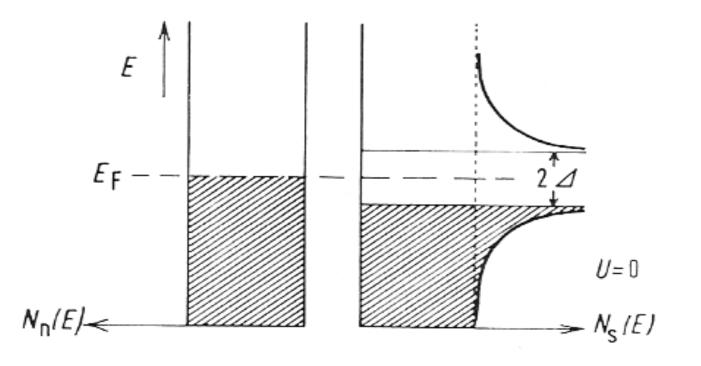
Electrons form Cooper pairs

Electrons condense into a coherent state. Similar to: Superfluidity **Bose-Einstein condensates** Lasers

Pauli exclusion: the sign of the wavefunction changes when two electrons are exchanged.

1972

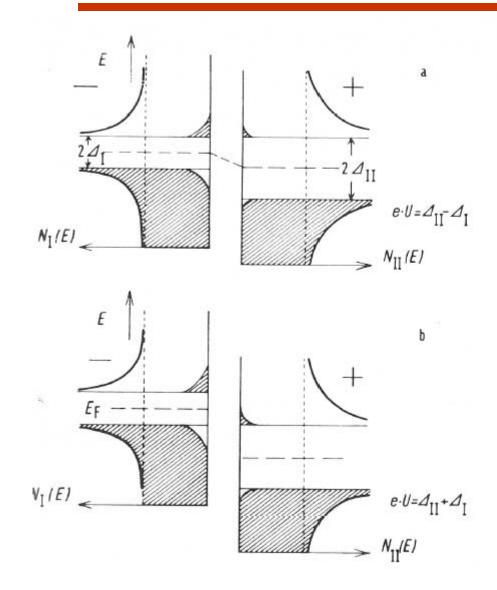
Density of states

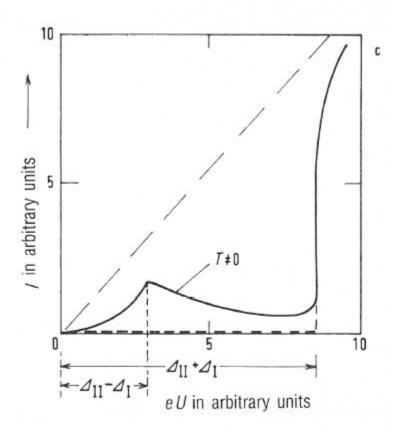


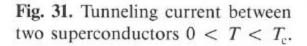
Condensate at E_F

Build wave packets out of states near E_F - Cooper pairs exchange electrons $\Psi \rightarrow -\Psi$ exchange CP $\Psi \rightarrow \Psi$ no states within Δ of E_F

Tunneling spectroscopy







Buckel - Superconductivity

BCS results

$$\frac{\Delta(0)}{k_B T} = 1.76$$

 $\frac{C_s - C_n}{C_n} \bigg|_{T = T_c}$

=1.43

Al

Cd

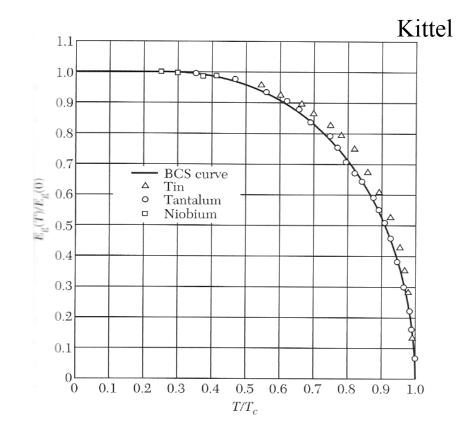
In

Hg

Nb

Pb

Sn



Superconductivity

Perfect diamagnetism

Jump in the specific heat like a 2nd order phase transition, not a structural transition

Superconductors are good electrical conductors but poor thermal conductors, electrons no longer conduct heat

There is a dramatic decrease of acoustic attenuation at the phase transition, no electron-phonon scattering

Dissipationless currents - quantum effect

Electrons condense into a single quantum state - low entropy.

Electron decrease their energy by Δ but loose their entropy.

London equations

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{1}{2m}(-i\hbar\nabla - qA)^2\psi + V\psi$$

+ cooper pairs condense into the same state

First London equation:

$$\frac{d\vec{j}}{dt} = \frac{n_s e^2}{m_e} \vec{E}$$

Second London equation:

$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B}$$

Meissner effect

Combine second London equation with Ampere's law

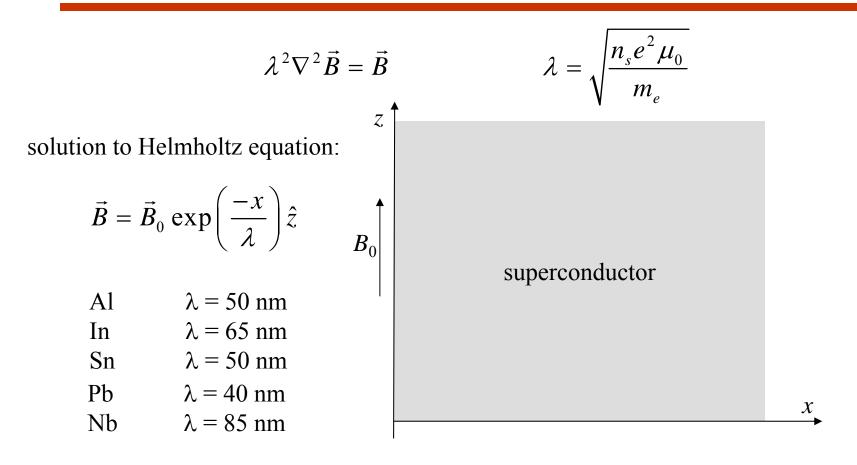
$$\nabla \times \vec{j} = \frac{-n_s e^2}{m_e} \vec{B} \qquad \nabla \times \vec{B} = \mu_0 \vec{j}$$
$$\nabla \times \nabla \times \vec{B} = \frac{-n_s e^2 \mu_0}{m_e} \vec{B}$$
$$\nabla \times \nabla \times \vec{B} = \nabla \left(\nabla \cdot \vec{B}\right) - \nabla^2 \vec{B}$$

Helmholtz equation: $\lambda^2 \nabla^2 \vec{B} = \vec{B}$

London penetration depth:

$$\lambda = \sqrt{\frac{n_s e^2 \mu_0}{m_e}}$$

Meissner effect



$$\nabla \times \vec{B} = \mu_0 \vec{j}$$
 $\vec{j} = \frac{\vec{B}_0}{\mu_0 \lambda} \exp\left(\frac{-x}{\lambda}\right) \hat{y}$

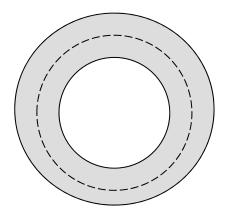
Flux quantization

$$\vec{j} = \frac{-e\hbar n_{cp}}{m_e} \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

For a ring much thicker than the penetration depth, j = 0 along the dotted path.

$$0 = \left(\nabla \theta + \frac{2e}{\hbar}\vec{A}\right)$$

Integrate once along the dotted path.

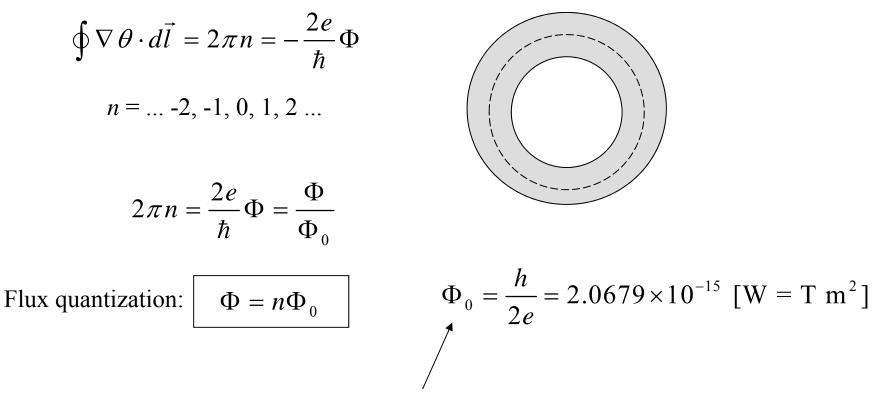


$$\oint \nabla \theta \cdot d\vec{l} = -\frac{2e}{\hbar} \oint \vec{A} \cdot d\vec{l} = -\frac{2e}{\hbar} \int_{S} \nabla \times \vec{A} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{2e}{\hbar} \int_{S} \vec{B} \cdot d\vec{s}$$

magnetic flux

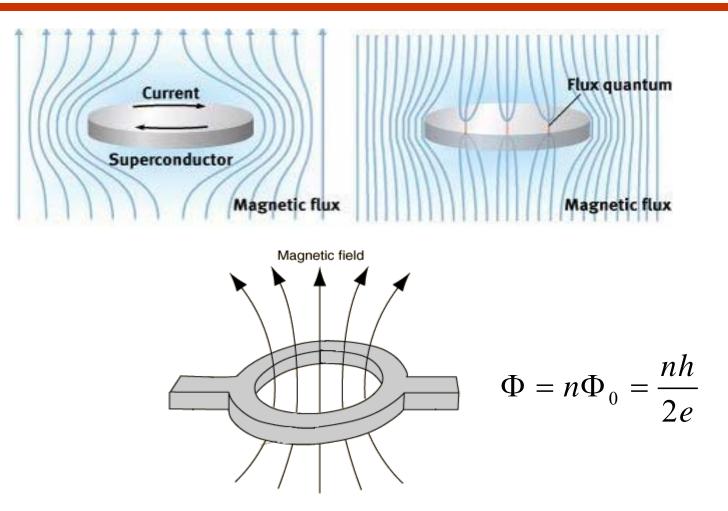
Stokes' theorem

Flux quantization



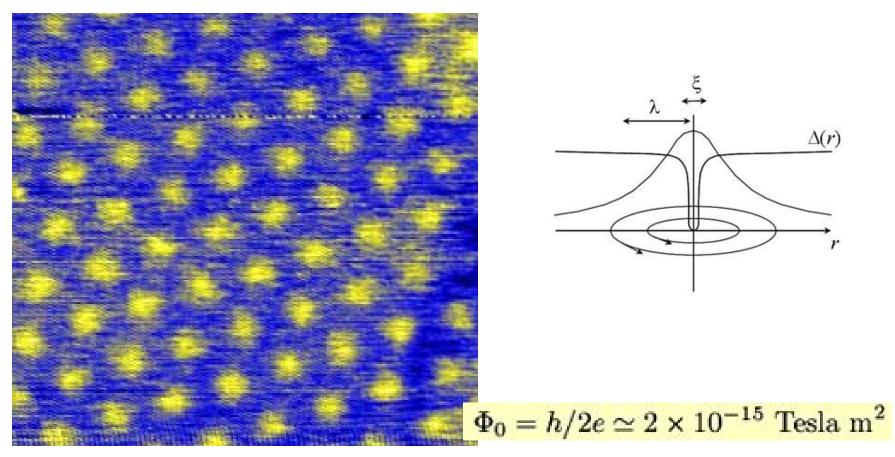
Superconducting flux quantum

Flux quantization



Flux is quantized through a superconducting ring.

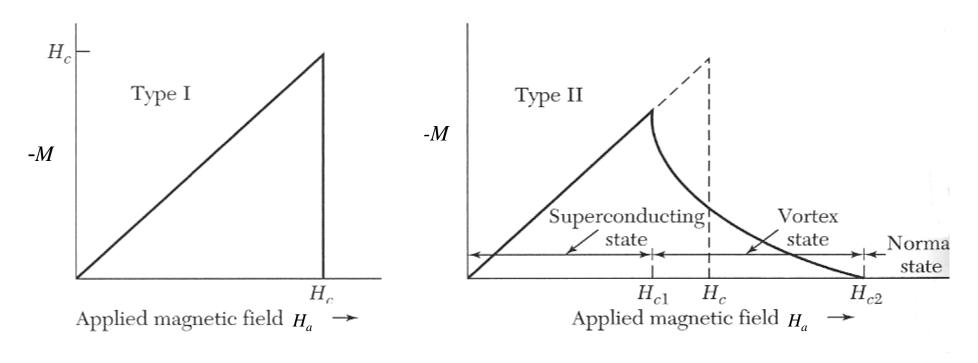
Vortices in Superconductors



STS image of the vortex lattice in NbSe₂. (630 nm x 500 nm, B = .4 Tesla, T = 4 K)

 $http://www.insp.upmc.fr/axe1/Dispositifs\%20 quantiques/AxeI2_more/VORTICES/vortexHD.htm$

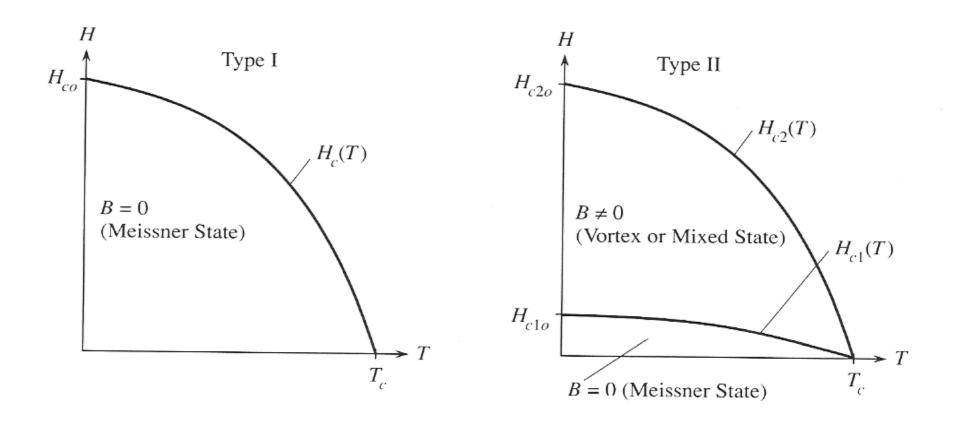
Type I and Type II



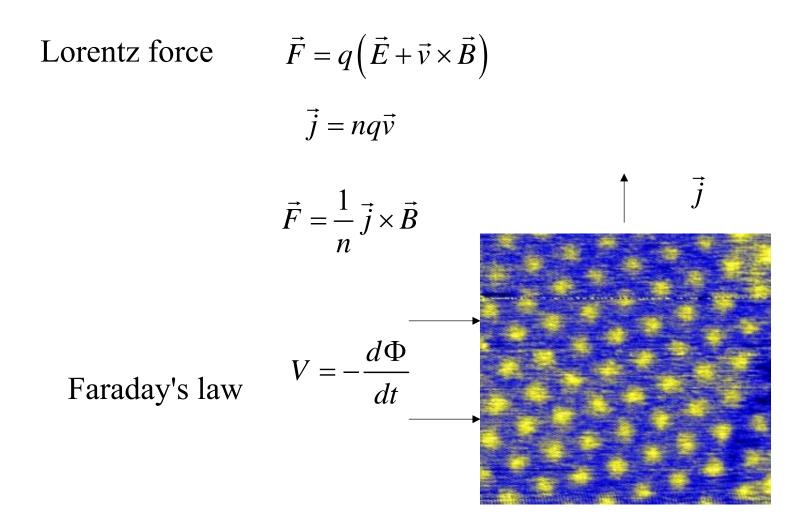
 $\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right)$

Superconductors are perfect diamagnets at low fields. B=0 inside a bulk superconductor.

Type I and Type II



Vortices in Superconductors



Defects are used to pin the vortices