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Electron-electron 
interactions



Electron-electron interactions

Including electron-electron interactions into the description of 
solids is very, very difficult.

If the electrons do not interact: Pauli exclusion, Fermi function.
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Perturbation theory

If fermions are noninteracting, they have an infinite lifetime and the probability 
that a state is occupied is given by the Fermi function. 

If there are interactions, quasiparticles have a finite lifetime. The lifetime can be 
calculated by Fermi's golden rule.

The occupation probability of a state depends on the occupation the other states. 
You solve for the probability distribution by solving a master equation. The 
occupation probability is not given by the Fermi function.
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Landau theory of a Fermi liquid 

Landau first considered small displacements of the electrons from the many-
electron ground state. The "normal modes" of this interacting electron system. 
The low lying excitations he called quasiparticles. 

The quasiparticles have as many degrees of freedom as the electrons. They can 
be labeled by k. 

Quasiparticles can be have the same spin, charge, and k vectors as the electrons. 

Concepts like the density of states refer to quasiparticles. 



Electron screening (Abschirmung)
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If a charge is put in a metal, the other charges will move 

The Helmholtz equation in 3-d
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If ind is proportional to -V,

Poisson equation
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Thomas-Fermi screening

Thomas - Fermi screening length
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Electron screening

Thomas - Fermi screening length
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Screening length depends on the electron density
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Mott transition

The number of bound states in a finite 
potential well depends on the width of the 
well. There is a critical width below which 
the valence electrons are no longer bound.



Metal-insulator transition

Atoms far apart: insulator

Atoms close together: metal



Mott transition

For low electron densities the screening is weak.  The electrons are bound and 
the material is an insulator. 

For high electron  densities the screening is strong, the valence electrons are 
not bound and the material is a metal. 

Kittel



The 1s state of a screened Coulomb 
potential becomes unbound at ks = 1.19/a0.

Mott transition (low electron density) 

Bohr radius 

High-temperature oxide superconductors / 
antiferromagnets

There are bound state solutions to the 
unscreened potential (hydrogen atom)
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Nevill Francis Mott 
Nobel prize 1977

Mott argued that the transition should be sharp.



degenerate semiconductor

Kittel

P in Si

Semiconductor conductivity at low temperature



PM paramagnetic metal
PI paramagnetic insulator
AFI Antiferromagnetic insulator
CR crossover regime (poor conductor)

Vanadium sesquioxide V2O3
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The kinetic energy can be minimized by allowing the electron states to 
spread out over the whole system giving them the lowest values of k and p. 
This leads to a higher potential energy. 

Wigner crystal 

At low electron densities, electrons moving in a uniform positive background 
should form a crystal.

Eugene Wigner

The potential energy is lowest if the 
electrons are at fixed positions as far 
apart as possible. 

For low electron densities, the total 
energy is lowest for a crystal of electrons.  



Peierls Transition

Predicted in the 1930's

Accidentally observed in the 1970's in 
TTF-TCNQ

Rudolf Peierls

A quasi-one dimensional metal will 
undergo a transition to an insulator at 
low temperature

Rudolf Peierls, More Surprises in Theoretical Physics, Princeton University Press. 
G. Grüner, Density Waves in Solids, Addison-Wesley Publishing Company, 1994. 



A periodic distortion of a 1-d lattice increases the periodicity to 2a

Peierls Transition

Consider a 1-d lattice of atoms with spacing a.

a

2a

There are 2N states in each band. (N is the number of unit cells in the crystal)
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For a distortion of the lattice cos(2kFx), the elastic energy increases like 2 while 
the electronic energy decreases like .  
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http://lamp.tu-graz.ac.at/~hadley/ss1/bloch/bloch.php


