The perpendicular components of B (magnetic flux density) and D (electric displacement field) and the parallel components of E (electric field) and H (magnetic field) are continous through the interface of two dielectrics. A derivation for this relations can be found in the lecture notes of the Electrodynamics course (chapter 12).

This leads us the the continuity condition for our problem:

$$
\begin{align*}
n \times E_{R} & =n \times\left(E_{I}+E_{T}\right) \tag{1}\\
n \cdot \epsilon_{2} E_{R} & =n \cdot \epsilon_{1}\left(E_{I}+E_{T}\right) \tag{2}
\end{align*}
$$

The components of the electromagnetic waves have the form $A_{0} e^{i(k x-\omega t)}$. At the interface the phase of the incoming, the reflected and the transmitted wave is the same.

Abbildung 1: Refraction and Reflection of an EM Wave on an Interface.

From (2) we get

$$
\begin{gathered}
\epsilon_{2} E_{0 T} \cos \left(\frac{\pi}{2}-\beta\right)-\epsilon_{1}\left(E_{0 I} \cos \left(\frac{\pi}{2}-\alpha\right)+E_{0 R} \cos \left(\frac{\pi}{2}-\alpha\right)\right)=0 \\
\Leftrightarrow \\
\epsilon_{2} E_{0 T} \sin \beta-\epsilon_{1}\left(E_{0 I}+E_{0 R}\right) \sin \alpha=0
\end{gathered}
$$

Snell's law of reflection says $n_{1} \sin \alpha=n_{2} \sin \beta$ and thus

$$
\begin{equation*}
\frac{\epsilon_{2}}{\epsilon_{1}} \frac{n_{1}}{n_{2}} E_{0 T} \sin \bar{\alpha}-\left(E_{0 I}+E_{0 R}\right) \sin \bar{\alpha}=0 \tag{3}
\end{equation*}
$$

From (1) we get

$$
\begin{align*}
E_{0 T} \sin \left(\frac{\pi}{2}-\beta\right)= & \left(E_{0 I}-E_{0 R}\right) \sin \left(\frac{\pi}{2}-\alpha\right) \\
& \Leftrightarrow \\
E_{0 T} \cos \beta= & \left(E_{0 I}-E_{0 R}\right) \cos \alpha \\
& \Leftrightarrow \\
E_{0 T} \frac{\cos \beta}{\cos \alpha}- & E_{0 I}+E_{0 R}=0 \tag{4}
\end{align*}
$$

We add eq.(3) and eq.(4) and get

$$
E_{0 T}\left(\frac{\cos \beta}{\cos \alpha}+\frac{\epsilon_{2}}{\epsilon_{1}} \frac{n_{1}}{n_{2}}\right)=2 E_{0 I}
$$

If we assume that the permeability is the same in both materials, we get

$$
\begin{gather*}
\frac{E_{0 T}}{E_{0 I}}=\frac{2}{\frac{\cos \beta}{\cos \alpha}+\frac{n_{2}}{n_{1}}} \\
\Leftrightarrow \\
\frac{E_{0 T}}{E_{0 I}}=\frac{2 \cos \alpha}{\cos \beta+\frac{n_{2}}{n_{1}} \cos \alpha} \tag{5}
\end{gather*}
$$

We go back to eq. 3 and divide on both sides by $E_{0 I}$. We also use $\frac{\epsilon_{2}}{\epsilon_{1}} \frac{n_{1}}{n_{2}}=\frac{n_{2}}{n_{1}}$

$$
\frac{E_{0 R}}{E_{0 I}}=\frac{n_{2}}{n_{1}} \frac{E_{0 T}}{E_{0 I}}-1
$$

Now we plug in eq.(5) and get

$$
\begin{gathered}
\frac{E_{0 R}}{E_{0 I}}=\frac{n_{2}}{n_{1}} \frac{2 \cos \alpha}{\cos \beta+\frac{n_{2}}{n_{1}} \cos \alpha}-1 \\
\Leftrightarrow
\end{gathered}
$$

$$
\begin{equation*}
\frac{E_{0 R}}{E_{0 I}}=\frac{n_{2} \cos \alpha-n_{1} \cos \beta}{n_{2} \cos \alpha+n_{1} \cos \beta} \tag{6}
\end{equation*}
$$

We get our result - the complex reflectance coefficient - when we plug in the complex index of refraction $n_{1}=\widetilde{n_{1}}+i K_{1}$ and $n_{2}=\widetilde{n_{2}}+i K_{2}$

$$
\begin{equation*}
\frac{E_{0 R}}{E_{0 I}}=\frac{\left(\widetilde{n_{2}}+i K_{2}\right) \cos \alpha-\left(\widetilde{n_{1}}+i K_{1}\right) \cos \beta}{\left(\widetilde{n_{2}}+i K_{2}\right) \cos \alpha+\left(\widetilde{n_{1}}+i K_{1}\right) \cos \beta} \tag{7}
\end{equation*}
$$

We can compare this result with the given solution in Kittel for light perpendicular to the surface. In this case $\alpha=\beta=0$. Moreover $n_{1}=1$ (vacuum). Plugging that into eq.(7) leads us to the same result as in Kittel,

$$
\frac{E_{0 R}}{E_{0 I}}=\frac{\left(\widetilde{n_{2}}+i K_{2}\right)-1}{\left(\widetilde{n_{2}}+i K_{2}\right)+1}
$$

